УДК: 639.111.11: 575

DOI: 10.52419/issn2072-2419.2023.3.275

ИЗМЕНЕНИЯ МИКРОСАТЕЛЛИТНОГО ПРОФИЛЯ В ОПЫТНОМ СТАДЕ СЕВЕРНЫХ ОЛЕНЕЙ НЕНЕПКОЙ ПОРОЛЫ

Николаев С.В. – к. вет. н., зав. отделом оленеводства (ORCID 0000-0001-5485-4616), **Матюков В.С.** – к. биол. н., вед. науч. сотр. (ORCID 0000-0002-3504-6864), **Филатов А.В.** – д-р. вет. н. проф., науч. сотр. (ORCID 0000-0003-4557-844x).

Ямальская опытная станция — обособленное структурное подразделение ФГБУН «Федеральный исследовательский центр Тюменский научный центр Сибирского отделения Российской академии наук» *fav6819@yandex.ru

Ключевые слова: северные олени, микросателлиты, аллелофонд, генетические маркеры, гетерозиготность.

Keywords: reindeer, microsatellites, allelofund, genetic markers, heterozygosity.

Поступила: 10.07.2023 Принята к публикации: 11.09.2023 Опубликована онлайн: 29.09.2023

РЕФЕРАТ

Цель исследований — оценка изменений аллельной структуры ДНК-микросателлитов в стаде северных оленей ненецкой породы. Работа проведена в Приуральском районе Ямало-Ненецкого автономного округа, на экспериментальном стаде животных, принадлежащих Ямальской опытной станции ТюмНЦ СО РАН. Аллелофонд включал микросателлитный профиль 300 оленей,

полученный в результате исследования 2018 года и 100 животных анализа 2022 года. Установлено, что существенные преобразования наблюдались по всем локусам, за исключением NVHRT24. В микросателлитном профиле 2018 года присутствовали 6 аллелей с суммарной частотой 0,298, не выявленные в исследованиях 2022 года. В 2022 году установлено 8 аллелей с суммарной частотой 0,105 не выявленных в предыдущем исследовании. Индекс Шеннона свидетельствует о незначительном росте генетического разнообразия в анализируемой популяции (на 0,059), а так же увеличении наблюдаемой гетерозиготности животных (на 0,074). Индекс фиксации по всем анализируемым локусам показал, что как в выборке 2018 года, так и 2022, в исследуемой популяции наблюдался дефицит гетерозигот, однако, данные 2022 года указывают на снижение дефицита гетерозиготности на 0,089. Анализ дивергенции популяции по отдельным локусам свидетельствует, что максимальное расхождение аллельной структуры произошло по локусу RT9 (d=0,331), RT30 (d=0,236) и NVHRT76 (d=0,231), а максимальное сходство сохранилось по локусам NVHRT24 (d=0,007), RT1(d=0,0014) и RT7 (d=0,0020). Таким образом, можно заключить, что в исследуемой популяции наблюдался выраженный дрейф генов.

ВВЕДЕНИЕ / INTRODUCTION

Северное оленеводство является ключевой отраслью сельскохозяйственного производства для арктических и субарктических регионов Российской Федера-

ции. Данное направление животноводства является основным, исторически сформированным видом занятости коренного населения северных регионов. Селекционно-племенная работа в оленеводстве

ведется традиционно-сложившимися методами, что не позволяет эффективно улучшать хозяйственно-полезные признаки животных [6,7,12]. Сказанное выше обуславливает необходимость разработки новых методов ведения селекционной работы в северном оленеводстве.

Одним из таких направлений является проведение молекулярно-генетической экспертизы и генетического анализа [5, 9,10]. Среди наиболее удобных маркеров для проведения генетических исследований являются микросателлиты (STR) [1,2,8]. Данный тип генетических маркеров относится к «нейтральным», поскольку не влияет на проявление фенотипических признаков животных и не подвергается давлению естественного и искусственного отбора [2, 3]. Микросателлиты обладают высоким полиморфизмом, что позволяет эффективно их использовать для анализа генетического родства и процессов, происходящих в популяции [4].

Цель исследований — изучить динамику изменений аллельной структуры ДНК-микросателлитов в стаде северных оленей ненецкой породы Ямальской опытной станции.

MATEPИAЛ И МЕТОДЫ MATERIALS AND METHOD

Работа проведена в Приуральском районе Ямало-Ненецкого автономного округа, на экспериментальном стаде (n≈1000) Ямальской опытной станции обособленного структурного подразделения ФГБУН ФИЦ Тюменского научного центра СО РАН. При проведении исследований использованы ретроспективные и свежеполученные данные по аллельной структуре девяти микросателлитных локусов ДНК северных оленей. К ретроспективным данным отнесен микросателлитный профиль исследуемого стада, полученный от 300 животных в 2018 году [13]. Новые данные включали результаты анализа полиморфизма микросателлитов 2022 года 100 оленей того же стада по тем же маркерам. Исследование ДНК выполнила лаборатория молекулярной генетики сельскохозяйственных животных ФГБНУ ФИЦ ВИЖ им. Л.К. Эрнста. В качестве исходного генетического материала служили кусочки тканей ушной раковины, которые консервировали в 96% этиловом спирте.

Динамику изменения генетической структуры стада устанавливали путем оценки количества аллелей на анализируемый локус (Na), их частоты (q) и ошибки (Mq), процента наблюдаемой (Ho) и ожидаемой (He) гетерозиготности, количества эффективных аллелей (Ne), числа приватных аллелей и сумму их частот (Σq), соответствия наблюдаемой и ожидаемой гетерозиготности (индекс фиксации, Fis), индекса Шеннона (I), коэффициентов генетического сходства (I_N) и генетической дистанции (I_N) между двумя выборками.

Статистический анализ проведен путем вычисления средней арифметической и стандартной ошибки, достоверность различий сравниваемых величин установлена с помощью t-критерия Стьюдента с использованием пакета программ Microsoft Office Excel.

РЕЗУЛЬТАТЫ / RESULTS

В таблице 1 показана динамика изменений частот аллелей по STR-локусам у северных оленей исследуемого стада. В результате смежных исследований установили значительные изменения по всем анализируемым локусам, за исключением NVHRT24, где отсутствовали достоверные различия по генным частотам. Так по локусу RT1 наблюдалось снижение встречаемости аллеля RT1 231 на 0,018 ($P \le 0,05$) и RT1 ²³⁹ на 0,041(Р≤0,05), а наиболее часто встречающимся аллелем стал RT1 ²³⁵ (q=0,198). Локус RT6 характеризовался достоверным снижением частот аллелей RT6 103 (на 0,084; P≤0,001), RT6 109 (на 0,033; P≤0,01), RT6 ¹¹⁵ (на 0,153; P≤0,001) и выраженным увеличением частоты встречаемости аллеля RT6 ¹⁰⁷ (в 6,2 раза; Р≤0,001). По локусу RT7 произошло снижение встречаемости микросателлит RT7 218 (на 0,041; P \leq 0,01) и RT7 224 (на 0,040; P \leq 0,001), а по RT7 220 наоборот наблюдалось увеличение на 0,086 (Р≤0,05).

Выраженные изменения наблюдались по локусу RT9. Так частота аллеля RT9 118 выросла в 2,6 раз (P \leq 0,001), RT9 120 в 4,3

раза ($P \le 0,001$), RT9 ¹²² в 5,5 раз ($P \le 0,001$), RT9 ¹³⁰ в 4,7 раза. В выборке 2018 года RT9 ¹²⁶ был самым распространенным аллелем этого локуса (q = 0,684). По результатам исследования его частота встречаемости снизилась в 10,7 раз ($P \le 0,001$), а самым распространенным стал RT9 ¹²² (q = 0,282). Локус RT27 характеризовался снижением в 2022 году частоты ранее самого встречающегося аллеля RT27 ¹³⁵ на 0,110 ($P \le 0,01$), при этом частота аллеля RT27 ¹³⁶ выросла в 12,8 раз ($P \le 0,001$). По локусу RT30 в популяции наблюдалось увеличение концентрации аллелей RT30 ¹⁸⁸ (на 0,238; $P \le 0,001$) и RT30 ²⁰⁰ (на 0,089; $P \le 0,01$), снижение частот аллелей RT30 ¹⁸⁰. Последний в 2018 году встречался с частотой 0,268, а в 2022 не был выявлен.

Существенное перераспределение частот наблюдалось так же по локусу NVHRT76. Так, в 2018 году самый распространённый аллель NVHRT76 107 в 2022 году стал встречаться в 8,8 раз реже (Р \leq 0,001), NVHRT76 105 в 22,8 раз (Р \leq 0,001), тогда как NVHRT76 97 , NVHRT76 99 , NVHRT76 101 , NVHRT76 109 и NVHRT76 111 достоверно увеличили свою распространенность в популяции. Локус NV21 характеризовался снижением частот аллелей NV21 160 (в 6,4 раза; Р \leq 0,001), NV21 166 (в 3,8 раз; Р \leq 0,001) и увеличением встречаемости аллелей NV21 164 (в 3,2 раза; Р \leq 0,001), NV21 170 (на 0,093; Р \leq 0,001) и NV21 174 (в 16,7 раз; Р \leq 0,001).

В таблице 2 показаны приват-аллели анализируемых выборок. Установлено, что в микросателлитном профиле 2018 года присутствовало 6 аллелей с общей частотой 0,298, которые не были выявлены в исследованиях 2022 года. Необходимо отметить аллель RT30 190, который встречался с частотой 0,268, а в последующем обнаружен не был. В 2022 году выявлены 8 аллелей с суммарной частотой 0,105, которые не были обнаружены у оленей в выборке 2018 года.

Результаты работы показали, что среднее количество аллелей с частотой более

0,1, оставалось на уровне 2018 года (табл. 3), при этом их число максимально возросло по локусу RT9 (с 1-й до 4-х), а снизилось по RT30 (с 4-х до 2-х). Количество наблюдаемых аллелей в среднем имело тенденцию к незначительному увеличению (с 9,33 до 9,67), как и показатель эффективных STR-аллелей (с 4,41 до 4,68). Минимальный полиморфизм микросателлитов по результатам исследований 2022 года отмечен по локусу NVHRT24 (7 аллелей), а максимальный по RT1 (12 аллелей). Наибольшее соответствие количества наблюдаемых и эффективных (Na/ Ne) аллелей в 2018 году было характерно для локусов RT1 (1,39) и NV21 (1,62), а максимальное отличие по RT9 (4,64) и NVHRT76 (2,70). В 2022 году по локусу RT9 данный показатель снизился в 2,7 раза и составил 1,73, а по RT30 наоборот вырос в 1,9 раза. В среднем отношение наблюдаемых и эффективных аллелей имело тенденцию к снижению. Индекс Шеннона свидетельствует о незначительном росте генетического разнообразия в анализируемой популяции (на 0,059). По локусу RT9 наблюдалось максимальное увеличение показателя (на 0,607), а по RT30 наоборот снижение (0,333). Средняя наблюдаемая гетерозиготность животных незначительно выросла (на 0.074), при этом по локусу RT6 наблюдалось максимальное снижение показателя (в 2,7 раза), а по RT27 максимальный рост (на 0,408). Ожидаемая гетерозиготность по локусу RT30 имела тенденцию к выраженному снижению (на 0,160), а по RT9, наоборот, к увеличению (0,324), при этом средний показатель почти не изменился. Индекс фиксации по всем анализируемым локусам свидетельствует, что как в выборке 2018 года, так и 2022, в исследуемой популяции наблюдается дефицит гетерозигот, однако, последние данные указывают на большее соответствие наблюдаемой и ожидаемой гетерозиготности - показатель в 2022 году снизился на 0,089. Стоит отметить, что по локусам RT1, RT7 и NVHRT24 дефицит гетерозигот продолнарастать, ПО локусам NVHRT76 и NV21 снижаться, по RT27 и

Таблица 1 Изменения частот ДНК-микросателлит отдельных локусов анализируемой популяции северных оленей

анализируемой популяции северных оленей									
Алле-	2018	2018 год 2022 год		Алле-	2018	8 год 20		22 год	
ЛИ	q	±Μq	q	±Μq	ЛИ	q	±Μq	q	±Μq
		Локус RT1					Локус RT6	j	
223	0,099	0,012	0,119	0,023	99	0,000	0,000	0,020*	0,010
225	0,126	0,014	0,104	0,021	101	0,020	0,006	0,030	0,012
227	0,119	0,013	0,104	0,021	103	0,099	0,012	0,015***	0,009
229	0,159	0,015	0,178	0,027	105	0,242	0,017	0,243	0,030
231	0,023	0,006	0,005*	0,005	107	0,040	0,008	0,248***	0,030
233	0,007	0,003	0,005	0,005	109	0,048	0,009	0,015**	0,009
235	0,137	0,014	0,198	0,028	111	0,060	0,010	0,069	0,018
237	0,096	0,012	0,084	0,020	113	0,058	0,010	0,074	0,018
239	0,091	0,012	0,050*	0,015	115	0,396	0,020	0,243***	0,030
241	0,118	0,013	0,099	0,021	117	0,036	0,008	0,045	0,015
243	0,005	0,003	0,010	0,007	119	0,002	0,002	0,000	0,000
245	0,020	0,006	0,045	0,015	Локус RT9				
		Локус RT7			116	0,017	0,005	0,005	0,005
216	0,027	0,007	0,030	0,012	118	0,060	0,010	0,153***	0,025
218	0,061	0,010	0,020**	0,010	120	0,061	0,010	0,262***	0,031
220	0,404	0,020	0,490*	0,035	122	0,051	0,009	0,282***	0,032
222	0,136	0,014	0,124	0,023	124	0,017	0,005	0,045	0,015
224	0,050	0,009	0,010***	0,007	126	0,684	0,019	0,064***	0,017
226	0,017	0,005	0,015	0,009	128	0,071	0,011	0,040	0,014
228	0,139	0,014	0,153	0,025	130	0,022	0,006	0,104***	0,021
230	0,136	0,014	0,139	0,024	132	0,018	0,005	0,045	0,015
232	0,028	0,007	0,015	0,009	122	0.041	Локус RT2		0.010
234	0,003	0,002	0,000	0,000	133	0,041	0,008	0,079	0,019
236	0,000	0,000	0,005	0,005	135	0,397	0,020	0,287**	0,032
100	0.221	Локус RT3		0.025	137	0,005	0,003	0,064***	0,017
188	0,331	0,019	0,569***	0,035	139	0,255	0,018	0,223	0,029
190	0,268	0,018	0,000***	0,000	141	0,030	0,007	0,010*	0,007
192	0,010	0,004	0,010	0,007	143	0,000	0,000	0,015	0,009
194	0,008	0,004	0,050**	0,015	145	0,070	0,010	0,059	0,017
198	0,018	0,005	0,000	0,000	147	0,128	0,014	0,183	0,027
200	0,154	0,015	0,243**	0,030	149	0,075	0,011	0,079	0,019
202	0,144	0,014	0,040***	0,014	Локус NVHRT24			0.007	
206	0,000	0,000	0,030	0,012	147	0,003	0,002	0,010	0,007
208	0,022	0,006	0,015	0,009	149	0,065	0,010	0,040	0,014
210 212	0,040	0,008	0,025 0,010	0,011	151 153	0,220 0,497	0,017 0,020	0,223 0,490	0,029
218	0,000	0,000	0,010	0,007	155	0,013	0,020	0,490	0,009
220	0,000	0,000	0,005	0,005	157	0,202	0,005	0,013	0,029
220		lokyc NVHR		0,000	159	0,000	0,000	0.010	0,029
91				Локус NV21					
95	0,018	0,005	0,010	0,007	158	0,027	0,007	0,040	0,014
97	0,118	0,013	0,252***	0,031	160	0,128	0,014	0,020***	0,010
99	0,005	0,003	0,050**	0,015	162	0,022	0,006	0,035	0,013
101	0,005	0,003	0,099***	0,021	164	0,055	0,009	0,178***	0,027
103	0,002	0,002	0,000	0,000	166	0,227	0,017	0,059***	0,017
105	0,114	0,013	0,005***	0,005	168	0,253	0,018	0,218	0,029
107	0,397	0,020	0.045***	0,015	170	0,184	0,016	0,277**	0,031
109	0,288	0,018	0,371*	0,034	172	0,103	0,012	0,124	0,023
111	0,048	0,009	0,153***	0,025		ĺ	ĺ	, and the second	
113	0,000	0,000	0,015	0,009	174	0,003	0,002	0,050**	0,015
	,	,	,	,					

Международный вестник ветеринарии, № 3, 2023 г.

Различия достоверны при уровне значимости: *P≤0,05 **P≤0,01 ***P≤0,001 по отношению к частотам 2018 года

RT30 произошло смещение в сторону избытка гетерозиготности, а избыточный в 2018 году по гетерозиготности локус RT6 наоборот стал с выраженным дефицитом.

Анализ дивергенции популяции по отдельным локусам (табл.4, рис.) свидетельствует, что максимальное расхождение аллельной структуры произошло по STR RT9 (d=0,331), RT30 (d=0,236) и

NVHRT76 (d=0,231), а максимальное сходство сохранилось по NVHRT24 (d=0,007), RT1(d=0,0014) и RT7 (d=0,0020). Таким образом, в исследуемой популяции северных оленей существенным образом изменилась аллельная структура STR-локусов, что подтверждается снижением среднего генетического сходства двух выборок до 0,894.

Таблица 2 Приват-аллели в анализируемых выборках северных оленей

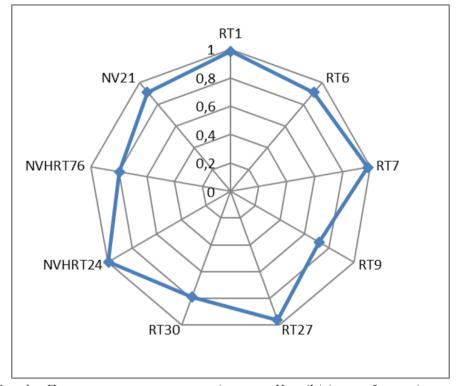

Локус	2018	год	2022 год		
Jokyc	Аллели	q	Аллели	q	
RT6	119	0,002	99	0,020	
RT7	234	0,003	236	0,005	
RT27	-	-	143	0,015	
RT30	190 198	0,268 0,018	218 220 206	0,005 0,005 0,030	
NVHRT24	-	-	159	0,010	
NVHRT76	91 103	0,005 0,002	113	0,015	
Всего, аллелей	6	X	8	X	
$\sum q$	X	0,298	X	0,105	

Таблица 3 Изменения генетических характеристик анализируемой популяции по STR-маркерам

Локус	Год	q≥1 0%	Na	Ne	Na/Ne	I	Но	Не	Fis
RT1	2018	5	12	8,62	1,39	2,229	0,834	0,884	0,057
	2022	5	12	7,81	1,54	2,177	0,752	0,872	0,138
RT6	2018	2	10	4,22	2,37	1,758	0,808	0,763	-0,059
KIO	2022	3	10	5,15	1,94	1,859	0,297	0,806	0,632
RT7	2018	4	10	4,41	2,49	1,788	0,685	0,773	0,114
K17	2022	4	11	3,33	3,30	1,552	0,614	0,700	0,123
RT9	2018	1	9	1,94	4,64	1,234	0,305	0,484	0,370
K19	2022	4	9	5,21	1,73	1,841	0,564	0,808	0,302
RT27	2018	3	8	3,97	2,02	1,621	0,424	0,748	0,433
K127	2022	3	9	5,38	1,67	1,857	0,832	0,814	-0,022
RT30	2018	4	10	4,37	2,29	1,682	0,563	0,771	0,270
K150	2022	2	11	2,57	4,28	1,349	0,832	0,611	-0,362
NVHRT24	2018	3	6	2,94	2,04	1,255	0,623	0,660	0,056
TVVIIC124	2022	3	7	2,97	2,36	1,297	0,545	0,663	0,178
NVHRT76	2018	4	10	3,70	2,70	1,535	0,434	0,730	0,405
TVTIICI 70	2022	3	9	4,18	2,15	1,656	0,624	0,761	0,180
NV21	2018	5	9	5,56	1,62	1,851	0,374	0,820	0,544
14421	2022	4	9	5,52	1,63	1,895	0,644	0,819	0,214
M	2018	3,44	9,33	4,41	2,40	1,661	0,561	0,737	0,243
	2022	1,33	9,67	4,68	2,29	1,720	0,634	0,762	0,154
М	2018	3,44	0,47	0,36	0,31	0,078	0,057	0,035	0,070
1/1	2022	0,88	0,50	0,54	0,31	0,094	0,055	0,029	0,088

Таблица 4 Генетические сходство и дистанции двух выборок одного стада по аллелям STR-локусов (результаты исследования 2018 и 2022 гг.)

Локус	I_N	D_N
RT1	0,986	0,014
RT6	0,912	0,092
RT7	0,980	0,020
RT9	0,718	0,331
RT27	0,962	0,039
RT30	0,790	0,236
NVHRT24	0,993	0,007
NVHRT76	0,794	0,231
NV21	0,912	0,092
M±m	$0,894\pm0,034$	$0,118\pm0,040$

 $Puc.\ I-\Pi$ олокусное генетическое сходство по $Heio\ (I_N)$ двух выборок одного стада по результатам двух смежных исследований

выводы / CONCLUSION

Полученные генетические характеристики свидетельствуют, что за анализируемый период времени в исследуемом стаде северных оленей произошли существенные изменения аллелофонда по STR -локусам. Одним из факторов значитель-

ных изменений генетико-популяционных параметров, по всей видимости, является генетический дрейф по причине небольшого размера популяции (п≈1000). Выявление новых аллелей и утрату ранее выявленных трудно объяснить недостаточны-

ми численностями выборок. Хотя этот феномен вероятнее всего также объясняется действием случайных факторов, обусловленных конечным объёмом популяции. В целом в популяции отмечено повышение генетического разнообразия, снижение уровня гомозиготности, рост числа наблюдаемых и эффективных аллелей. Несмотря на снижение среднего индекса фиксации, анализ, проведенный по отдельным локусам, выявил значительные флуктуации этого показателя, которые могут быть следствием высокой структурированности стада, обусловливающей нарушение случайности спаривания важенок с хорами во время гона. Выявление конкретных причин нарушения генетического равновесия и редукции гетерозигот требует изучения системы разведения и его половозрастной структуры стада, а также исследования поголовья по половозрастным группам и расширения номенклатуры анализируемых STRлокусов.

CHANGES IN THE MICROSATEL-LITE PROFILE IN THE EXPERI-MENTAL HERD REINDEER OF THE NENETS BREED

Nikolaev S.V. – Candidate of Veterinary Sciences, Head of the Department of Reindeer Husbandry (ORCID 0000-0001-5485-4616), Matyukov V.S. – Candidate of Biological Sciences, Leading Researcher (ORCHID 0000-0001-), Filatov A.V. – Doctor of Veterinary Sciences, Professor, researcher (ORCID 0000-0003-4557-844x).

Yamal Experimental Station is a separate structural subdivision of the Federal State Budgetary Institution "Federal Research Center Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences"

*fav6819@yandex.ru

ABSTRACT

The aim of the research is to evaluate changes in the allelic structure of DNA microsatellites in a herd of Nenets reindeer. The work was carried out in the Priuralsky district of the Yamalo-Nenets Autonomous

Okrug, on an experimental herd of animals belonging to the Yamal experimental station. The allelofund included a microsatellite profile of 300 deer obtained as a result of the 2018 study and 100 animals analyzed in 2022. It was found that significant transformations were observed at all loci, with the exception of NVHRT24. In the microsatellite profile of 2018, there were 6 alleles with a total frequency of 0.298, which were not detected in the 2022 studies. In 2022, 8 alleles with a total frequency of 0.105 not identified in the previous study were established. The Shannon index indicates a slight increase in genetic diversity in the analyzed population (by 0.059), as well as an increase in the observed heterozygosity of animals (by 0.074). The fixation index for all analyzed loci showed that both in the sample of 2018 and 2022, there was a deficit of heterozygotes in the study population, however, the data of 2022 indicate a decrease in the deficit of heterozygotes by 0.089. Analysis of the divergence of the population for individual loci indicates that the maximum divergence of the allelic structure occurred at the RT9 locus (d=0.331), RT30 (d=0.236) and NVHRT76 (d=0.231), and the maximum similarity was preserved for the loci NVHRT24 (d=0.007), RT1 (d=0.0014) and RT7 (d=0.0020). Thus, pronounced gene drift was observed in the studied population.

СПИСОК ИСТОЧНИКОВ

- 1. Dotsev A.V., Kharzinova V.R., Romanenko T.M., Laishev K.A., Brem G.G., Nikitkina E.V., Zinovieva N.A. Microsatellitebased heterozygosity-fitness correlations in reindeer// Journal of Animal Science. 2019. T. 97. № S3. C. 266.
- 2. Kharzinova V.R., Dotsev A.V., Solovieva A.D., Fedorov V.I., Shimit L.D.O., Romanenko T.M., Senchik A.V., Sergeeva O.K., Goncharov V.V., Laishev K.A., Yuzhakov A.A., Brem G.G., Zinovieva N.A. Genetic variability of Russian domestic reindeer populations (Rangifer tarandus) by microsatellites// Journal of Animal Science. 2020. T. 98. № 4. C. 237-238.
- 3. Radko A., Rychlik T. Use of blood group tests and microsatellite DNA markers for

- parentage verification in a population of Polish Red-and-White cattle Annals of Animal Science. 2009; 9 (2): 119-125.
- 4. Van de Goor L. H. P., Panneman H. & Van Haeringen W. A. A proposal for standardization in forensic bovine DNA typing: allele nomenclature of 16 cattle-specific short tandem repeat loci, Animal Genetics 2009, 40, 630-636.
- 5. Артюшин И.В., Коноров Е.А., Курбаков К.А., Столповский Ю.А. Разработка системы праймеров для секвенирования митохондриального генома северного оленя Rangifer tarandus. Генетика. 2021. Т. 57. № 1. С. 103-107.
- 6. Лайшев К.А., Самандас А.М., Прокудин А.В., Романенко Т.М., Гончаров В.В., Мухамадеева Т.В. Ветеринарные и зоотехнические проблемы воспроизводства в северном оленеводстве и пути их решения. Достижения науки и техники АПК. 2013. № 11. С. 42-44.
- 7. Романенко Т.М. Применение биотехнологий в северном оленеводстве. В сборнике: Проблемы животноводства Северных стран. Материалы международной научно-практической конференции. 2005. С. 64-66.
- 8. Романенко Т.М., Калашникова Л.А., Филиппова Г.И., Лайшев К.А. Генетическая структура популяции северных оленей о. Колгуев Ненецкого автономного округа. Достижения науки и техники АПК. 2014. № 4. С. 68-70.
- 9. Романенко Т.М., Митюков А.С. Экстерьерные особенности северных оленей острова Колгуев и Малоземельской тундры в сравнительном аспекте. Известия Санкт-Петербургского государственного аграрного университета. 2011. № 24. С. 113-118.
- 10. Романенко Т.М., Харзинова В.Р., Лайшев К.А. Сравнительная характеристика микропопуляций северных оленей ненецкой породы Малоземельской тундры НАО. Генетика и разведение животных. 2020. № 2. С. 37-43.
- 11. Столповский Ю.А., Бабаян О.В., Каштанов С.Н., Пискунов А.К., Сёмина М.Т., Холодова М.В., Лайшев К.А., Южаков А.А., Романенко Т.М., Лисичкина М.Г.,

- Дмитриева Т.И., Етылина О.В., Прокудин А.В., Свищёва Г.Р. Генетическая оценка пород северного оленя (Rangifer tarandus) и их дикого предка с помощью новой панели STR-маркеров. Генетика. 2020. Т. 56. № 12. С. 1410-1426.
- 12. Южаков А.А., Романенко Т.М., Лайшев К.А. Новые знания, методы и модели в разведении, экологии и эпизоотологии северных оленей. Санкт-Петербург Пушкин, 2018.
- 13. Лайшев К.А., Южаков А.А., Казановский Е.С., Чеботарев Н.Т., Жариков Я.А., Карабанов В.П., Коковкина В.С. Оценка состояния здоровья северных оленей и формирование в пределах Ямало-Ненецкого автономного округа промежуточных генеалогических групп с высокими хозяйственными качествами. Отчет о НИР по ГК № 01-19/38. 21.06.2018.

REFERENCES

- 1. Dotsev A.V., Kharzinova V.R., Romanen-ko T.M., Laishev K.A., Brem G.G., Nikitkina E.V., Zinovieva N.A. Microsatellite-based heterozygosity-fitness correlations in reindeer// Journal of Animal Science. 2019. Vol. 97. No. S3. p. 266.
- 2. Kharzinova V.R., Dotsev A.V., Solovieva A.D., Fedorov V.I., Shimit L.D.O., Romanenko T.M., Senchik A.V., Sergeeva O.K., Goncharov V.V., Lai-shev K.A., Yuzhakov A.A., Brem G.G., Zinovieva N.A. Genetic variability of Russian domestic reindeer populations (Rangifer tarandus) by microsatellites// Journal of Animal Science. 2020. Vol. 98. No. 4. pp. 237-238.
- 3. Radko A., Rychlik T. Use of blood group tests and microsatellite DNA markers for parentage verification in a population of Polish Red-and-White cattle Annals of Animal Science. 2009; 9 (2): 119-125.
- 4. Van de Goor L. H. P., Panneman H. & Van Haeringen W. A. A proposal for standardization in forensic bovine DNA typing: allele nomenclature of 16 cattle-specific short tandem repeat loci, Animal Genetics 2009, 40, 630-636.
- 5. Artyushin I.V., Konorov E.A., Kurbakov K.A., Stolpovsky Yu.A. Development of a primer system for sequencing the mitochondrial genome of the reindeer Rangifer taran-

- dus. Genetics. 2021. Vol. 57. No. 1. pp. 103-107.
- 6. Laishev K.A., Samandas A.M., Prokudin A.V., Romanenko T.M., Goncharov V.V., Mukhamadeeva T.V. Veterinary and zootechnical problems of reproduction in reindeer husbandry and ways to solve them. Achievements of science and technology of the agro-industrial complex. 2013. No. 11. pp. 42-44.
- 7. Romanenko T.M. Application of biotechnologies in reindeer herding. In the collection: Problems of animal husbandry of the Nordic countries. Materials of the international scientific and practical conference. 2005. pp. 64-66.
- 8. Romanenko T.M., Kalashnikova L.A., Filippova G.I., Laishev K.A. Genetic structure of the reindeer population of Kolguev Island of the Nenets Autonomous Okrug. Achievements of science and technology of the agro-industrial complex. 2014. No. 4. pp. 68-70
- 9. Romanenko T.M., Mityukov A.S. Exterior features of the northern reindeer of Kolguev Island and the Little Earth tundra in a comparative aspect. Proceedings of the St. Petersburg State Agrarian University. 2011. No. 24. pp. 113-118.

- 10. Romanenko T.M., Kharzinova V.R., Laishev K.A. Comparative characteristics of micropopulations of reindeer of the Nenets breed of the Low-Earth tundra of the NAO. Genetics and animal breeding. 2020. No. 2. pp. 37-43.
- 11. Stolpovsky Yu.A., Babayan O.V., Kashtanov S.N., Piskunov A.K., Semina M.T., Kholodova M.V., Laishev K.A., Yuzhakov A.A., Romanenko T.M., Lisichkina M.G., Dmitrieva T.I., Etylina O.V., Prokudin A.V., Svishcheva G.R. Genetic evaluation breeds of reindeer (Rangifer tarandus) and their wild ancestor using a new panel of STR markers. Genetics. 2020. Vol. 56. No. 12. pp. 1410-1426.
- 12. Yuzhakov A.A., Romanenko T.M., Laishev K.A. New knowledge, methods and models in breeding, ecology and epizootology of reindeer. Saint Petersburg Pushkin, 2018.
- 13. Laishev K.A., Yuzhakov A.A., Kazanovsky E.S., Chebotarev N.T., Zharikov Ya.A., Karabanov V.P., Kokovkina V.S. Assessment of the health status of reindeer and the formation of intermediate genealogical groups with high economic qualities within the Yamalo-Nenets Autonomous Okrug. Research report. No. 01-19/38. 21.06.2018.