Preview

International Journal of Veterinary Medicine

Advanced search

Molecular characteristics of Cryptosporidium scrofarum in pig farms of the Vologda region of the Northwestern Federal District of the Russian Federation

https://doi.org/10.52419/issn2072-2419.2023.4.68

Abstract

The purpose of these studies was to identify, identify, analyze and study the distribution of Cryptosporidium scrofarum in pigs in the  farms  of  the  Vologda  Region  of  the Northwestern Federal District of the Russian Federation.

For the first time in the Russian Federation, using the example of the Vologda Oblast of the Northwestern Federal District in pig  farms  of  various  types  using  the  latest molecular  genetic  methods,  namely  using high-throughput  sequencing  of  amplicon libraries of fragments of the 18S rRNA gene obtained  because  of  nested  PCR,  we  have established the infection of C. scrofarum in all  age  groups  of  examined  animals.  The contamination of animals kept in pig farms was 34%, in farms - 32.4%. Animals that are fattened at the age of 13-24 weeks are most susceptible to infection.

Analysis  of  ASV  taxonomic  affiliation using  phylogenetic  analysis,  supplemented by analysis using the blastn algorithm in the GenBank database, showed that a total of 10 ASV types (amplicon sequence variant) are present  in  all  tested  samples,  which  have high  similarity  to  sequences  deposited  in GenBank  as  fragments  of  the  18S  p  gene Cryptosporidium  scrofarum  RNA.  It  has been established that the types of ASV1 and ASV2  detected  in  various  geographical  regions of the world from Portugal and Great Britain  to  China,  India  and  Australia  are identified in all examined farms, although in significantly  different  quantities.  The  remaining ASVs are present in much smaller numbers  and  do  not  repeat  from  farm  to farm.  These  sequences  probably  belong  to local populations of subspecies Cryptosporidium scrofarum.  It  is  interesting  to  find  a unique sequence of the genus Cryptosporidium  of  type  ASV8,  which  can  later  be  described as a new species.

About the Authors

A. L. Kryazhev
FSBE Institution of Higher Education «Vologda State Dairy Farming Academy named after N.V. Vereshchagin»
Russian Federation

Doctor  of  Veterinary Sciences, Professor of Department of Epizootology  and  Microbiology



A. S. Novikov
FSBE Institution of Higher Education «Vologda State Dairy Farming Academy named after N.V. Vereshchagin»
Russian Federation

Candidate of Veterinary Sciences, Associate Professor  of Department  of  Internal  Non-Contagious  Diseases, Surgery  and  Obstetrics, Ph.D 



References

1. Snelling WJ, Xiao L, Ortega-Pierres G, Lowery CJ, Moore JE, Rao JR, Dooley JS. Cryptosporidiosis in developing countries. The Journal of Infection in Developing Countries. 2007;1(03):242-256. doi:10.3855/jidc.360

2. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Levine MM. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. The Lancet. 2013;382 (9888):209-222. doi:10.1016/S0140-6736(13)60844-2

3. Striepen B. Parasitic infections: time to tackle cryptosporidiosis. Nature News. 2013;503(7475):189-191. doi:10.1038/503189a

4. Wang R, Qiu S, Jian F, Zhang S, Shen Y, Zhang L, Ning C, Cao J, Qi M, Xiao L. Prevalence and molecular identification of Cryptosporidium spp. Parasitol Res. 2010; 107: 1489-1494. doi:10.1007/s00436-010-2024-6

5. Kennedy GA, Kreitner GL, Strafuss AC. Cryptosporidiosis in three pigs. Journal of the American Veterinary Medical Association. 1977 Feb;170(3):348-350. PMID: 833036.

6. Gorbov YuK, Machinsky AP. The spread of associative diseases of agricultural animals and the experience of combating them in the Mordovian Autonomous Soviet Socialist Republic Parasitocenoses and associative diseases. M., 1984;235-252 [in Russ.]

7. Kryazhev AL, Novikov AS, Nikitin VF. Epizootological situation on cryptosporidiosis of piglets in industrial pig breeding in the Vologda region. Veterinary. 2020; 1:30-34. doi:10.30896/0042-4846.2020.23.1.30-34 [in Russ.]

8. Novikov AS, Kryazhev AL. Cryptosporidiosis of piglets in the conditions of the north-western non-Chernozem region of the Russian Federation. Monograph Vologda-Molochnoe: Vologda GMHA. 2022;112. [in Russ.]

9. Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50-year perspective (1971-2021). Int J Parasitol. 2021 Dec;51(13-14):1099-1119. doi: 10.1016/j.ijpara.2021.08.007.

10. Chen Y, Qin H, Wu Y, et al. Global prevalence of Cryptosporidium spp. in pigs: a systematic review and meta-analysis. Parasitology. 2023;150(6):531-544. doi:10.1017/S0031182023000276

11. Němejc K, Sak B, Květoňová D, Kernerová N, Rost M, Cama VA, Kváč M. Occurrence of Cryptosporidium suis and Cryptosporidium scrofarum on commercial swine farms in the Czech Republic and its associations with age and husbandry practices. Parasitology research. 2013;112(3):1143-1154. doi:10.1007/s00436-012-3244-8

12. Wang W, Gong QL, Zeng A, et al. Prevalence of Cryptosporidium in pigs in China: A systematic review and meta-analysis. Transboundary and Emerging Diseases. 2021 May;68(3): 1400-1413.doi:10.1111/tbed.13806

13. Wang P, Li S, Zou Y, et al. The infection and molecular characterization of Cryptosporidium spp. in diarrheic pigs in southern China. Microbial Pathogenesis. 2022 Apr; 165:105459. doi:10.1016/j.micpath.2022.105459

14. Feng Y, Ryan UM, Xiao L. Genetic Diversity and Population Structure of Cryptosporidium. Trends in Parasitology. 2018 Nov;34(11):997-1011. doi:10.1016/j.pt.2018.07.009.

15. Pettersson E, Ahola H, Frössling J, Wallgren P, Troell K. Detection and molecular characterisation of Cryptosporidium spp. in Swedish pigs. Acta Veterinaria Scandinavica. 2020; 62(1):1-7. doi:10.1186/s13028-020-00537-z

16. Kryazhev AL, Novikov AS, Identification of the taxonomic affiliation of cryptosporidium in piglets in the north-west of the Russian Federation using molecular genetic methods. Russian Journal of Parasitology. 2023; 17(1):84-90. doi:10.31016/1998-8435-2023-17-1-84-90 [in Russ.]

17. Pavlásek I. Cryptosporidia: biology, diagnosis, host spectrum, specificity, and the environment Remedia Klin. Mikrobiol. 1999; 3: 290-301.

18. Rahimah AB, Cheah SC, Rajinder S. Freeze-drying of oil palm (Elaeis guineensis) leaf and its effect on the quality of extractable DNA. J. Oil Palm Res. 2006; 18: 296-304.

19. Zheng S, Li D, Zhou C, Zhang S, Wu Y, Chang Y, Zhang L. Molecular identification and epidemiological comparison of Cryptosporidium spp. among different pig breeds in Tibet and Henan, China. BMC veterinary research. 2019; 15(1):1-8. doi:10.1186/s12917-019-1847-3

20. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods. 2016 Jul;13(7):581-583. doi:10.1038/nmeth.3869.

21. Maddox-Hyttel C, Langkjær R, Enemark H, Vigre H. Cryptosporidium and Giardia in different age groups of Danish cattle and pigs-Occurrence and management associated risk factors. Vet Parasitol. 2006; 141:48-59. doi: 10.1016/j.vetpar.2006.04.032

22. Hamnes I, Gjerde B, Forberg T, Robertson L. Occurrence of Cryptosporidium and Giardia in suckling piglets in Norway. Vet Parasitol. 2007;144: 222-33. doi: 10.1016/j.vetpar.2006.10.011

23. Guselle N, Appelbee A, Olson M. Biology of Cryptosporidium parvum in pigs: from weaning to market. Vet Parasitol. 2003;113 (1):7-18. doi:10.1016/S0304-4017(03)00039-6

24. Johnson J, Buddle R, Reid S, Armson A, Ryan U. Prevalence of Cryptosporidium genotypes in pre- and post-weaned pigs in Australia. Exp Parasitol. 2008; 119: 418-421. doi: 10.1016/j.exppara.2008.04.009

25. Zou Y, Ma JG, Yue DM, Zheng, WB, Zhang XX, Zhao Q, Zhu XQ. Prevalence and risk factors of Cryptosporidium infection in farmed pigs in Zhejiang, Guangdong, and Yunnan provinces, China. Tropical animal health and production. 2017; 49(3):653-657. doi:10.1007/s11250-017-1230-y

26. Yin JH, Yuan ZY, Cai HX, Shen YJ, Jiang YY, Zhang J, Wang YJ, Cao JP. Age-related infection with Cryptosporidium species and genotype in pigs in China. Biomed Environ Sci. 2013 Jun;26(6):492-5. doi: 10.3967/0895-3988.2013.06.010.

27. Kváč M, Němejc K, Kestřánová M, Květoňová D, Wagnerová P, Kotková M, Rost M, et al. Age-related susceptibility of pigs to Cryptosporidium scrofarum infection. Vet Parasitol. 2014;202(3-4):330-334. doi: 10.1016/j.vetpar.2014.02.012

28. Zhang W, Yang F, Liu A, Wang R, Zhang L, Shen Y, et al. Prevalence and genetic characterizations of Cryptosporidium spp in pre-weaned and post-weaned piglets in Heilongjiang Province, China. PLoS One. 2013;8:е67564. doi:10.1371/journal.pone.0067564


Review

For citations:


Kryazhev A.L., Novikov A.S. Molecular characteristics of Cryptosporidium scrofarum in pig farms of the Vologda region of the Northwestern Federal District of the Russian Federation. International Journal of Veterinary Medicine. 2023;(4):68-77. (In Russ.) https://doi.org/10.52419/issn2072-2419.2023.4.68

Views: 198


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)