Preview

International Journal of Veterinary Medicine

Advanced search

Dependence of coagulation activity of chicken blood IN VITRO on temperature

https://doi.org/10.52419/issn2072-2419.2023.4.327

Abstract

The paper presents the results of examine  the  relationship  between  blood  plasma incubation  temperature  and  the  hemostasis parameters in chickens. The purpose of this research was to study of the blood coagulation  parameters  in  chickens  during  hypo-, normo- and hyperthermia in vitro. In addition, to assess the possibility of using a coagulometer to identify hemostasis activity and the use of hemostatic reactions in chickens as models for human medicine. The Vologda region was where the study was conducted. The coagulogram was examined for the following parameters: thrombin time (TT), prothrombin time (PT), activated partial thromboplastin  time  (APTT),  fibrinogen  activity, and antithrombin III activity (AT-III). It was found that at 46° C activation of blood clotting occurs, manifested as an acceleration of the  TT  by  29%  (13  seconds),  PT  by  72% (111  seconds),  and  decrease  in  the  antithrombin III activity by 6% (1.5 seconds) compared to normothermia. The parameters of  secondary  hemostasis  also  responded  to hypothermia (18 °C) with hypercoagulation. It  was  an  acceleration  of  PT  of  81%  (125 sec),  an  increase  in  fibrinogen  activity  by 77% (84 sec) and a decrease in AT-III activity  by  55%  (14  sec),  with  the  exception  of thrombin time, which was extended by 70% (104  seconds).  There  were  no  significant changes  in  the  APTT  at  different  temperatures.  The  correlation-regression  and  one-factor analysis of variance revealed a significant correlation between the temperature and the TT and the fibrinogen activity, where the coefficients of determination for which were 71%  and  39%,  respectively.  Plasma  hemostasis  activity  measured  on  a  coagulometer (at 37 °C) showed no significant differences from  those  measured  at  43  °C,  except  for prothrombin time, which was 71.51 seconds (47%) less than that measured at 43 °C.

About the Authors

L. L. Fomina
Federal State Budgetary Educational Institution of Higher Education «Vologda State Dairy Farming Academy named after N.V. Vereshchagin»
Russian Federation

candidate  of  Science (Biology),  аassociate рprofessor



D. I. Berezina
Federal State Budgetary Educational Institution of Higher Education «Vologda State Dairy Farming Academy named after N.V. Vereshchagin»
Russian Federation

candidate  of  Science  (Biology), аassociate professor



T. S. Kulakova
Federal State Budgetary Educational Institution of Higher Education «Vologda State Dairy Farming Academy named after N.V. Vereshchagin»
Russian Federation

Candidate  of  Science  (Аgriculture),  Associate Professor



K. E. Modanova
Federal State Budgetary Educational Institution of Higher Education «Vologda State Dairy Farming Academy named after N.V. Vereshchagin»
Russian Federation

student



References

1. Fedorova E.S., Stanishevskaya O.I., Dementieva N.Yu. The current state and problems of breeding poultry farming in Russia (review) // Agrarian science of the Euro-North-East. 2020;21(3):217-232. DOI https://doi.org/10.30766/2072-9081.2020.21.3.217-232

2. Ukolov P.I., Sharaskina O.G., Chigilinskaya P.Yu. Features of reproduction of chickens in small farms of the North-West of Russia // Regulatory and legal regulation in veterinary medicine. 2021;(4):126-128. DOI https://doi.org/10.52419/issn2072-6023.2021.4.126

3. Buzala M. et al. The mechanism of blood coagulation, its disorders and measurement in poultry // Livestock Science. 2017. Vol. 195. pp. 1-8. DOI http://dx.doi.org/10.1016/j.livsci.2016.11.009

4. Avian Physiology. P. D. Sturkie. 1986. P. 516. DOI https://doi.org/10.1007/978-1-4612-4862-0

5. Asakura H. [Classifying types of DIC: clinical features and animal models]. Rinsho Ketsueki. 2016 Apr;57(4):397-404. Japanese. DOI: 10.11406/rinketsu.57.397. PMID: 27169441.

6. Gentry, P.A. Comparative aspects of blood coagulation //The Veterinary Journal. V. 168. I. 3. 2004. P. 238-251. DOI: https://doi.org/10.1016/j.tvjl.2003.09.013.

7. Frost CL, Naudé RJ, Muramoto K. Ostrich antithrombin III: kinetics and mechanism of inhibition of ostrich thrombin. Int J Biochem Cell Biol. 2002 Sep;34(9):1164-71. DOI: 10.1016/s1357-2725(02)00037-7. PMID: 12009311.

8. Tentoni, J., Polini, N.N. & Casanave, E.B. Comparative vertebrate fibrinolysis. Comp Clin Pathol 19, 225–234 (2010). DOI: https://doi.org/10.1007/s00580-010-0988-3

9. Kuznik B.I. et al. Age-related features of the hemostasis system in chickens// Thrombosis, hemostasis and rheology. No. 1 (21). 2005. pp. 32-36

10. Danilishin Yu.B. Age-related features of immunity and hemostasis in pituitary insufficiency // Abstract of the dissertation of the Candidate of Medical Sciences: 14.00.53 St. Petersburg, 2005. -22 p.

11. Kuznik B. And et al. The effect of hypophysiectomy on immunity, erythropoiesis, blood clotting and fibrinolysis in chickens and old chickens // Medical Immunology. 2004. Vol. 6. No. 3-5. pp. 235-236.

12. Lewis J. H. Comparative hemostasis in vertebrates. Springer Science & Business Media. 2013. P 426.

13. Gnezdilova L.A. Dynamics of indicators of coagulation hemostasis of cows in different physiological periods in conditions of extensive and intensive animal husbandry// International Bulletin of Veterinary Medicine. No.2. 2022. pp. 128-134 DOI: 10.52419/issn2072-2419.2022.2.128,

14. Baruzdina E.S. Informative value of indicators of the hemostasis system in dogs during surgical operations// International Bulletin of Veterinary Medicine. No.3. 2016. pp. 107-110

15. Takahira, R.K., Thomazini, C.M., Trentin, T.C., Sartori, J.R. Comparison of homologous and heterologous thromboplastin in avian prothrombin time in two different temperatures // Proceedings of the 63rd Annual Meeting of the American College of Veterinary Pathologists and the 47th Annual Meeting of the American Society of Veterinary Clinical Pathology, December 1-5, Seattle, Washington. 2012.

16. Bruchim Y., Kelmer E., Cohen A., Codner C., Segev G., Aroch I. Hemostatic abnormalities in dogs with naturally occurring heatstroke // J Vet Emerg Crit Care (San Antonio). 2017. V.27(3) P.315-324. DOI: 10.1111/vec.12590

17. Xu S, Miao H, Gong L, Feng L, Hou X, Zhou M, Shen H, Chen W. Effects of Different Hypothermia on the Results of Cardiopulmonary Resuscitation in a Cardiac Arrest Rat Model // Dis Markers. 2022. Vol. 1-2. P. 1-11. DOI: 10.1155/2022/2005616

18. Wu J., Yuan W., Li J. et al. Effects of Mild Hypothermia on Cerebral Large and Small Microvessels Blood Flow in a Porcine Model of Cardiac Arrest // Neurocrit Care. 2017. Vol. 27. p. 297-303. DOI: https://doi.org/10.1007/s12028-017-0395-6


Review

For citations:


Fomina L.L., Berezina D.I., Kulakova T.S., Modanova K.E. Dependence of coagulation activity of chicken blood IN VITRO on temperature. International Journal of Veterinary Medicine. 2023;(4):327-334. (In Russ.) https://doi.org/10.52419/issn2072-2419.2023.4.327

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)