Molecular biological characteristics of the intestinal microbiocenosis of dogs on a mixed diet
https://doi.org/10.52419/issn2072-2419.2024.4.59
Abstract
Metabarcoding research of the domestic animal intestines is relevant for veterinary medicine. The effect of feeding and food additives on its gut microbiome is of both applied and fundamental significance and demonstrates the stimulation of the various groups of bacteria development. The objective of our work is to study the effect of the domestic complete pet feed Dilly on the microbial community of the dogs’ intestines in breeding kennel of Irkutsk. The microbiome composition was determined in 12 animals of different ages having used Illumina MiSeq amplicon sequencing of the V3-V4 region of 16S rRNA. Rates diversity had been adapted to evaluate the affluence and prominence of Bacterial operational and taxonomic units and nonparametric Mann-Whitney criteria (correlative test, p≤0,05) used to evaluate the certainty value of the difference of operational and taxonomic unit percentage in different physiological groups. All in all, 147150 the 16S rRNA gene fragment sequences were obtained. The dominant bacteria turned out to be the phyla Firmicutes, Actinobacteriota, Bacteroidota, and Proteobacteria. The animals that had been under research had almost no Fusobacteriota bacteria - markers of a diet with a predominance of raw meat (predation). The Firmicutes phylum included bacteria from five families. The most numerous families among the Firmicutes were the Lactobacillaceae bacteria. Representatives of seven families were observed among Actinobacteriota bacteria, of which Bifidobacteriaceae predominated. Proteobacteria of the Enterobacterales order and Burkholderiales made up a small proportion of the entire community and depended on the animal age. The research result could be used in perspective to enlarge knowledge about the digestive process in an omnivorous animal of the wolf pack. These animals have a more or less flexible microbiome, which has several variants of normal composition. There predominated lactic acid bacteria in the microbial communities of the dogs’ intestines, which consumed feed that contained coarse dietary fibers. In its turn, lactic acid bacteria reduced the number of Fusobacteriota.
About the Authors
S. N. LoginovRussian Federation
Loginov S.N. – postgraduate student, Department of Special Veterinary Disciplines
A. S. Batomunkuev
Russian Federation
Batomunkuev A.S. – D.Sc. (Veterinary Science), Assoc. Prof., Assoc. Prof., Department of Special Veterinary Disciplines
A. A. Sukhinin
Russian Federation
Sukhinin A.A. – D.Sc. (Biol. Science), Prof., Head of the Department of Microbiology, Virology and Immunology
A. Yu. Krasnopeev
Russian Federation
Krasnopeev A.Yu. – research associate
A. S. Gorshkova
Russian Federation
Gorshkova A.S. – Ph.D. (Biol. Science), research associate
O. I. Belykh
Russian Federation
Belykh O.I. – Ph.D. in Biology, Assoc. Prof., Leading Researcher
I. A. Lipko
Russian Federation
Lipko I.A. – Ph.D. in Biology, Researcher
S. A. Potapov
Russian Federation
Potapov S.A. –Researcher
I. V. Tikhonova
Russian Federation
Tikhonova I.V. – Ph.D. in Biology, Senior Researcher
References
1. Pereira A.M. et al. Dogs’ microbiome from tip to toe / A.M. Pereira, A. Clemente // Top Companion Anim Med. 2021. 45. P. 100584.
2. Garrigues Q. et al. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors / Q. Garrigues, E. Apper, S. Chastant, H. Mila // Front. Vet. Sci. 2020. 9. P. 964649. doi: 10.3389/fvets.2022.964649
3. Benno Y. et al. Impact of the advances in age on the gastrointestinal microflora of beagle dogs / Y. Benno, H. Nakao, K. Uchida, T. Mitsuoka // J Vet Med Sci. 1992. 54(4). P. 703. doi: 10.1292/jvms.54.703.
4. Sukhinin A.A. Geneticheskoe raznoobrazie bakterij kishechnika krupnogo rogatogo skota, vy`yavlennoe s pomoshh`yu vy`sokoproizvoditel`nogo sekvenirovaniya [Genetic diversity of cattle intesti-nal bacteria revealed using high-throughput sequencing] / A.A. Sukhinin, A.Yu. Krasnopeev, A.S. Gorshkova [et al.] // International Bulletin of Veteri-nary Medicine. 2022. No. 3. P. 27-36. DOI 10.52419/issn2072-2419.2022.3.27.
5. Suchodolski J. et al. Analysis of bacterial diversity in the canine duo-denum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis / J. Suchodolski, J. Camacho, J.M. Steiner // FEMS Microbiol Ecol. 2008. 66. P. 567. doi: 10.1111/j.1574–6941.2008.00521.x.
6. Middelbos I.S. et al. Phylogenetic Characterization of Fecal Microbi-al Communities of Dogs Fed Diets with or without Supplemental Dietary Fiber Using 454 Pyrosequencing / I.S. Middelbos, B.M. Vester Boler, A. Qu, B.A. White, K.S. Swanson, G.C. Jr Fahey / PLoS ONE. 2010. 5(3). P. 9768. https://doi.org/10.1371/journal.pone.0009768
7. Lin Ch.-Y. et al. Longitudinal fecal microbiome and metabolite date demonstrate rapid shifts and subsequent stabilization after an abrupt dietary change in healthy adult dogs / Ch.-Y. Lin, J. Aashish, P. Oba // J. Animal Mi-crobiome. 2020. 46(4) DOI: 10.1186/s42523-022-00194-9
8. Suchodolski J. Analysis of the gut microbiome in dogs and cats. Vet Clin Pathol. 2022. 50. P. 6. https://doi.org/10.1111/vcp.13031
9. Vazquez-Baeza E.R. et al. Dog and human inflammatory bowel dis-ease rely on overlapping yet distinct dysbiosis networks / E.R. Vazquez-Baeza, J.S Hyde, Knight R. Suchodolski // Nat Microbiol. 2016. 1. P. 16177
10. Pilla R. et al. The Role of the Canine Gut Microbiome and Metabo-lome in Health and Gastrointestinal Disease / R. Pilla, J.S. Suchodolski // Front. Vet. Sci. 2020. 6. P. 498.
11. Pilla R. et al. The Gut Microbiome of Dogs and Cats, and the Influ-ence of Diet / R. Pilla, J.S. Suchodolski // Veter Clin. N. Am. Small Anim. Pract. 2021. 51. P. 605.
12. Alshawaqfeh M.K. et al. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy / M.K. Alshawaqfeh, B. Wajid, Y. Minamoto // FEMS Microbiol Ecol. 2017. 93 (11).
13. Krylova I.O. et al. Indikatorny`e mikroorganizmy`-kontaminanty` kishechnogo mikrobioma shhenkov bel`gijskoj ovcharki (malinua) [Indicator microorganismscontaminants of the intestinal microbiome of Belgian Shep-herd (Malinois) puppies] / I.O. Krylova, Yu.R. Sadykova // Bulletin of Perm University. Series: Biology. 2020. Issue. 4. P. 303-311. DOI: 10.17072/1994-9952-2020-4-303-311.
14. Krylova I.O. et al. Ocenka sostoyaniya kishechnogo mikrobioma slu-zhebny`x sobak po indeksu ko-lonizacionnoj rezistentnosti [Assessment of the state of the intestinal microbiome of service dogs using the colonization re-sistance index] / I.O. Krylova, Yu.R. Sadykova // Problems of Medical Mycol-ogy. 2021. Vol. 23 (2). P. 97.
15. Dunyashev T.P. et al. Vliyanie probiotika profort® na mikrobiom kishechnika sobak [The effect of the probiotic Profort® on the intestinal mi-crobiome of dogs] / T.P. Dunyashev, T.N. Romadina, D.G. Tyurina, L.A. Ilyina, Yu.E. Kuznetsov // Veterinary Science. 2022. No. 7. P. 51-54.
16. Callahan B. et al. High-resolution sample inference from Illumina amplicon data / B. Callahan, P. McMurdie, M. Rosen, A.W. Han, A.J.A. John-son, S.P. Holmes // Nat. Methods 2016. 13. P. 581.
17. Quast C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools / C. Quast, E. Pruesse, P. Yil-maz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F.O. Glöckner // Nucleic Ac-ids Res. 2013. 41. P. 590.
18. Schloss, P.D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing mi-crobial communities / P.D. Schloss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson // Appl. Environ. Microbiol. 2009. 75. P. 7537.
19. Lyu T. et al. Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus) / T. Lyu, G. Liu, H. Zhang, L. Wang, S. Zhou, H. Dou // AMB Exp. 2018. 8. P. 123. doi: 10.1186/s13568-018-0652-x.
20. Amitay E.L. et al. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study / E.L. Amitay, S. Werner, M. Vital // Carcinogenesis. 2017. 38(8). P. 781.
21. Liu X. et al. Blautia – a new functional genus with potential probiotic properties? / X. Liu, B. Mao, J. Gu, J. Wu, S. Cui, G. Wang, J. Zhao, H. Zhang, W. Chen // Gut Microbes. 2021. 13. P. 1. DOI: 10.1080/19490976.2021.1875796
22. Lynch J.B. et al. Gut microbiota Turicibacter strains differentially modify bile acids and host lipids / J.B. Lynch, E.L. Gonzalez, K. Choy // Nat Commun. 2023. 14. P. 3669 https://doi.org/10.1038/s41467-023-39403-7
23. Zhang Z. et al. The effects of Lactobacillus johnsonii on diseases and its potential applications / Z. Zhang, L. Zhao, J. Wu, Y. Pan, G. Zhao, Z. Li, L. Zhang // Microorganisms. 2023. 11. P.2580. https://doi.org/10.3390/microorganisms11102580
24. Kim D.-H. et al. Modulation of the intestinal microbiota of dogs by kefir as a functional dairy product / D.-H. Kim, D. Jeong, I. -B. Kang, H.-W. Lim, Y. Cho, K.-H. Seo // Journal of Dairy Science. 2019. V. 102 (5). P. 3903.
Review
For citations:
Loginov S.N., Batomunkuev A.S., Sukhinin A.A., Krasnopeev A.Yu., Gorshkova A.S., Belykh O.I., Lipko I.A., Potapov S.A., Tikhonova I.V. Molecular biological characteristics of the intestinal microbiocenosis of dogs on a mixed diet. International Journal of Veterinary Medicine. 2024;(4):59-71. (In Russ.) https://doi.org/10.52419/issn2072-2419.2024.4.59