Preview

International Journal of Veterinary Medicine

Advanced search

HORMONAL PROFILE OF FOLLICLE FLUID OF DIFFERENT DIAMETERS IN RELATION TO VIABILITY AND LIPID CONTENT IN GRANULOSA CELLS OF SUS SCROFA DOMESTICUS

https://doi.org/10.52419/issn2072-2419.2024.4.424

Abstract

Modeling of oocyte maturation systems in farm animals is based on the available information on the composition of follicular fluid (FF), however, there are no data on the hormonal status of porcine follicular fluid in relation to the viability and functional state of the lipidome in granulosa cells (GCs) in the dynamics of folliculogenesis. We analyzed the hormonal profile (LH, FSH, T3, T4, cortisol) of porcine antral follicle fluid and obtained data on the effect of these hormones on the viability and lipid content (lipid droplets-LDs) of porcine GCs in follicles of different diameters (ø <3 mm, ø 3-5 mm and ø>5 mm). An inverse correlation was found between the proportion of GCs with high fluorescence intensity of the lipid droplet complex – NileRed (IFNileRed/LD - a marker of lipid droplets content) and the concentration of cortisol in the dynamics of folliculogenesis (-0.830, p<0.05), as well as an inverse correlation between the cortisol content and the proportion of viable cells (- 0.995, p<0.05). A direct correlation was found between the content of both T3 and T4 with IFNileRed/LD (0.901, 0.946, p<0.05) in GCs, which probably suggests accumulation of the energy substrate in the cytosol. There were no reliable correlation values in the content of LH in the FF and the proportion of GCs with high IFNileRed/LD intensity. The high level of correlation in the concentration of T3, T4 in the FF and cortisol with the lipid’s content in the GCs indicates a significant influence of these hormones on the energy reserve and viability of the GCs during folliculogenesis and allows us to consider them as potential candidates for an indepth study of the mechanisms of metabolic disorders that provoke abnormalities in the development of offspring obtained at in vitro maturation and fertilization of female gametes, as well as for modeling the composition of the media for the formation of a mature porcine ovum in vitro

About the Authors

T. I. Kuzmina
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Kuzmina T.I. – Doctor of Biological Sciences, Professor, Chief Researcher, Head of the Laboratory of Developmental Biology



A. O. Prituzhalova
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Prituzhalova A.O. – Junior Researcher, Laboratory of Developmental Biology



A. A. Kurochkin
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Kurochkin A.A. – Junior Researcher, Laboratory of Developmental Biology



E. I. Baranova
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Baranova E.I. – laboratory research assistant Laboratory of Developmental Biology



References

1. Tabatabaei, S. Biochemical composition of blood plasma and follicular fluid in relation to follicular size in buffalo / Tabatabaei, S. and Mamoei, M. // Comparative clinical pathology. – 2011. – Vol. 20. – P. 441-445. DOI: 10.1007/s00580-010-1014-5.

2. Carpintero, N. L. Follicular steroid hormones as markers of oocyte quality and oocyte development potential / Carpintero, N. L., Suárez, O. A., Mangas, C. C., Varea, C. G., Rioja, R. G. // Journal of human reproductive sciences. –2014. –Vol. 7. –P. 187-193. DOI:10.4103/0974-1208.142479.

3. Kayanja, M. Markers of oocyte quality to enhance human IVF outcomes: a bibliographic review / Kayanja, M., Tiri, M., Muyigo, M., Rujumba, D., Brian, N., Francis, K. // Open journal of internal medicine. – 2024. – Vol. 14. – P. 102-121. DOI: 10.4236/ojim.2024.141010.

4. Uyar, A. Cumulus and granulosa cell markers of oocyte and embryo quality / Uyar, A., Torrealday, S., Seli, E. // Fertility and sterility. – 2013. – Vol. 99. – P. 979-997. DOI: 10.1016/j.fertnstert.2013.01.129

5. Hassanein, E.M. Gonadotropin-releasing hormone (GnRH) and its agonists in bovine reproduction I: structure, biosynthesis, physiological effects, and its role in estrous synchronization / Hassanein, E.M., Szelényi, Z.; Szenci, O. // Animals. – 2024. – Vol. 14. – № 10. DOI: 10.3390/ani14101473.

6. Lamb, G.C. Reproductive Endocrinology and Hormonal Control of the Estrous Cycle / Lamb, G.C., Smith, M.F., Perry, G.A., Atkins, J.A., Risley, M.E., Busch, D.C., Patterson, D.J. // The Bovine Practitioner. – 2010. – Vol. 44. – № 1. –P. 18-26. DOI:10.21423/bovine-vol44no1p18-26.

7. Costermans, N. Follicular fluid steroid profile in sows: relationship to follicle size and oocyte quality / Costermans, N., Soede, N., Tricht, F., Blokland, M., Kemp, B., Keijer, J., Teerds K. // Biology of reproduction. – 2020. – Vol. 102. – P. 740-749. DOI: 10.1093/biolre/ioz217.

8. Gregoraszczuk, E.L. In vitro effect of triiodothyronine on the cyclic amp, progesterone and testosterone level in porcine theca, granulosa and luteal cells / Gregoraszczuk, E.L., Galas, J. // Endocrine regulations. –1998. –Vol. 32. –P. 93-98.

9. Osteen K. G. Follicular fluid modulation of functional LH receptor induction in pig granulosa cells / Osteen K. G., Anderson L. D., Reichert L. E., Channing C. P. // Journal of reproduction and fertility. – 1985. – Vol. 74. – P. 407-418. DOI: 10.1530/jrf.0.0740407.

10. Naskar S. Steroid and metabolic hormonal profile of porcine serum vis-à-vis ovarian follicular fluid / Naskar S., Borah S., Vashi Y., Thomas R., Sarma D. K., Goswami J., Dhara S. K. // Veterinary World. – 2016. – Vol 9. – P. 1320-1323. DOI: 10.14202/vetworld.2016.1320-1323.

11. Sirotkin A. V. FSH, oxytocin and IGF-I regulate the expression of sirtuin 1 in porcine ovarian granulosa cells / Sirotkin A. V., Dekanová P., Harrath A. // Physiologycal research. – 2020. – Vol.69. – P. 461-466. DOI: 10.33549/physiolres.934424.

12. Guthrie, H. D. Changes in plasma estrogen, luteinizing hormone, folliclestimulating hormone and 13,14-dihydro-15-keto-prostaglandin F2 alpha during blockade of luteolysis in pigs after human chorionic gonadotropin treatment / Guthrie, H. D., Bolt, D. J. // Journal of animal science. – 1983. – Vol. 57. – P. 993-1000. DOI:10.2527/jas1983.574993x.

13. Breen, S. M. The impact of dose of FSH (Folltropin) containing LH (Lutropin) on follicular development, estrus and ovulation responses in prepubertal gilts / Breen, S. M., Knox, R. V. // Animal Reproduction Science. –2012. –Vol. 132. –P. 193-200. DOI: 10.1016/j.anireprosci.2012.05.013.

14. Lavoie, H. A. 123 Physiological regulation of ovarian follicle growth and maturation in the pig / Lavoie, H. A. // Journal of animal science. –2018. –Vol. 96. –P. 342–343. DOI: 10.1093/jas/sky404.754.

15. Rosales M. Thyroid hormones in ovarian follicular fluid: Association with oocyte retrieval in women undergoing assisted fertilization procedures / Mónica Rosales, Myriam Nuñez, Andrea Abdala, Viviana Mesch, Gabriela Mendeluk // JBRA assisted reproduction. –2020. –Vol. 24. –P 245-249. DOI: 10.5935/1518-0557.20200004

16. Cedíková, M. Comparison of prolactin, free T3 and free T4 levels in the follicular fluid of infertile women and healthy fertile oocyte donors / Cedíková, M, Babuška, V, Rajdl, D., Zech, N.H., Kališ, V., Králíčková, M. // Ceska Gynekologie. –2012. –Vol. 77. – P. 471-476.

17. Kala, M. Role of cortisol and superoxide dismutase in psychological stress induced anovulation / Kala, M., Nivsarkar, M. // General and comparative endocrinology. –2016. –Vol. 225. –P. 117–124. DOI: 10.1016/j.ygcen.2015.09.010.

18. Nakanishi T. Cortisol induces follicle regression, while FSH prevents cortisolinduced follicle regression in pigs / Nakanishi T., Okamoto A., Ikeda M., Tate S., Sumita M., Kawamoto R., Tonai S., Lee J.Y., Shimada M., Yamashita Y. // Molecular Human Reproduction. –2021. –Vol. 27. DOI: 10.1093/molehr/gaab038.

19. Stimson, R. H. Acute physiological effects of glucocorticoids on fuel metabolism in humans are permissive but not direct / Stimson, R. H., Anderson, A. J., Ramage, L. E., Macfarlane, D. P., de Beaux, A. C., Mole, D. J, Andrew, R., Walker, B. R. // Diabetes, obesity and metabolism. – 2017. –Vol. 19. –P. 883-891. DOI: 10.1111/dom.12899.

20. Paolo V. Thyroid hormones T3 and T4 regulate human luteinized granulosa cells, counteracting apoptosis and promoting cell survival / Paolo V., Mangialardo C., Zacà C., Barberi M., Sereni E., Borini A., Centanni M., Coticchio G., Verga-Falzacappa C., Canipari R. // Journal of endocrinological investigation. –2020. –Vol. 43. –P. 821-831. DOI: 10.1007/s40618-019-01169-5.

21. Liu J. Growth and the initiation of steroidogenesis in porcine follicles are associated with unique patterns of gene expression for individual components of the ovarian insulin-like growth factor system / Liu J., Koenigsfeld A. T., Cantley T. C., Boyd C. K., Kobayashi Y., Lucy M. C.// Biology of Reproduction. –2000. –Vol. 63. –P. 942–952. DOI: 10.1095/biolreprod63.3.942

22. Filicori, M. The role of luteinizing hormone in folliculogenesis and ovulation induction / Filicori, M. // Fertility and sterility. –1999. –Vol. 71. –P. 405-414. DOI: 10.1016/s0015-0282(98)00482-8.

23. Costermans, N. G. J., Soede, N. M., Tricht, F., Blokland, M., Kemp, B., Keijer, J., & Teerds, K. J. Follicular fluid steroid profile in sows: relationship to follicle size and oocyte quality / Costermans, N. G. J., Soede, N. M., Tricht, F., Blokland, M., Kemp, B., Keijer, J., Teerds, K. J. // Biology of Reproduction. –2019. –Vol. 102. –P. 740-749. DOI: 10.1093/biolre/ioz217.

24. Lin, P. Effects of follicular size and FSH on granulosa cell apoptosis and atresia in porcine antral follicles / Lin, P., & Rui, R. // Molecular reproduction and development. –2010. –Vol. 77. – P. 670–678. DOI: 10.1002/mrd.21202.

25. Kuzmina, T.I. The role of highly dispersed silica nanoparticles in the realization of the effects of granulosa on the maturation and fertilization competence of Sus scrofa domesticus oocytes / Kuzmina, T.I., Chistyakova, I.V., Prituzhalova, A.O., Tatarskaya, D.N. // Vavilov journal of genetics and breeding. –2022. –Vol 26. –P. 234-239. (In Russ.)

26. Zhang K-H. Follicle stimulating hormone controls granulosa cell glutamine synthesis to regulate ovulation / Zhang K-H., Zhang F-F., Zhang Z-L., Fang K-F., Sun WX, Kong N., Wu M., Liu H-O, Liu Y., Li Z., Cai Q-Q., Wang Y., Wei Q-W., Lin P-C, Lin Y., Xu W., Xu C-J, Yuan Y-Y., Zhao S-M. // Protein & cell. –2024. –Vol. 15. –P. 512–529. DOI: 10.1093/procel/pwad065.

27. Liao, B. Effects of androgen excessrelated metabolic disturbances on granulosa cell function and follicular development / Liao, B., Qi, X., Yun, C., Qiao, J., Pang, Y. // Frontiers in endocrinology (Lausanne). –2022. –Vol. 13. DOI: 10.3389/fendo.2022.815968.

28. Morimoto A. Granulosa cell metabolism at ovulation correlates with oocyte competence and is disrupted by obesity and aging / Morimoto A., Rose R. D., Smith K. M., Dinh D. T., Umehara T., Winstanley Y. E., Shibahara H., Russell D. L., Robker R. L. // Human Reproduction. –2024. –Vol. 39. –P. 2053–2066. DOI: 10.1093/humrep/deae154.

29. Arroyo A. Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact / Arroyo A., Kim B., Yeh J. // Reproductive Sciences. –2020. –Vol. 27. – P. 1223-1252. DOI: 10.1007/s43032-019-00137-x.

30. He, H. Effects of prolactin on the proliferation and hormone secretion of ovine granulosa cells in vitro / He, H., Su, X., Yang, H., Zhang, Y., Duan, C., Yang, R., Xie, F., Liu, Y., Liu, W. // Animal Bioscience. – 2024. –Vol. 37. –P. 1712-1725. DOI: 10.5713/ab.23.0448.

31. Downs S. Fatty acid oxidation and meiotic resumption in mouse oocytes / Downs S., Mosey J., Klinge J. // Molecular reproduction and development. –2009. –Vol. 76. – P. 844-853. DOI: 10.1002/mrd.21047.

32. Simerman A. A. Intrafollicular cortisol levels inversely correlate with cumulus cell lipid content as a possible energy source during oocyte meiotic resumption in women undergoing ovarian stimulation for in vitro fertilization / Simerman A. A., Hill D. L., Grogan T. R., Elashoff D., Clarke N. J., Goldstein E. H., Manrriquez A. N., Chazenbalk G. D., Dumesic D. A. // Fertility and sterility. –2015. –Vol. 103. – P. 249-57. DOI: 10.1016/j.fertnstert.2014.09.034.

33. Effects of cortisol on granulosa cell function during follicle maturation in the horse / Abbasi K., Bollwein S., Kowalewski M. P., Scarlet D. // Journal of equine veterinary science. –2023. –Vol. 125. DOI: 10.1016/j.jevs.2023.104685.

34. Arnold A. Primary hyperparathyroidism: molecular genetic insights and clinical implications / Arnold A. // Endocrine abstracts. –2017. DOI: 10.1530/endoabs.50.PL1.

35. Liu, J. Role of CYP51 in the Regulation of T3 and FSH-Induced Steroidogenesis in Female Mice / Liu, J., Tian, Y., Ding, Y., Heng, D., Xu, K., Liu, W., Zhang, C. // Endocrinology. –2017. –Vol. 158. –P. 3974-3987. DOI: 10.1210/en.2017-00249.

36. Spicer L. J. Effects of thyroid hormones on bovine granulosa and thecal cell function in vitro: dependence on insulin and gonadotropins / Spicer L. J., Alonso J., Chamberlain C. S. // Journal of dairy science. –2001. – Vol. 84. –P. 1069-1076. DOI: 10.3168/jds.S0022-0302(01)74567-5.

37. Paes V. M. Role of thyroid hormones (triiodothyronine and thyroxine) in the regulation of mammalian folliculogenesis / Paes V. M., Vieira L. A., Figueiredo J. R. // Revista portuguesa de ciencian veterinarias. – 2017. –Vol. 112. –P. 23-31. DOI: 10.1159/000123900.

38. Montvila, E., Effects of thyroid hormones on the functional state of bovine granulosa cells in vitro // Montvila, E., Mityashova, O., Lebedeva, I. Genetics and breeding of animals. – 2022. – Vol. (4). – P. 42-48. (In Russ.)

39. Noguchi, M. 2010. Peripheral concentrations of inhibin A, ovarian steroids, and gonadotropins associated with follicular development throughout the estrous cycle of the sow / Noguchi, M., K. Yoshioka, S. Itoh, C. Suzuki, S. Arai, Y. Wada, Y. Hasegawa, and H. Kaneko. // Reproduction. –Vol. 139.–P. 153-161. DOI: 10.1530/REP-09-0018.

40. Liu, J. Growth and the initiation of steroidogenesis in porcine follicles are associated with unique patterns of gene expression for individual components of the ovarian insulin-like growth factor system / Liu, J., Koenigsfeld, A., Cantley, T., Boyd, C., Kobayashi, Y., Lucy, M. // Biology of reproduction. –2000. –Vol. 63. –P. 942–952. DOI: 10.1095/biolreprod63.3.942.

41. Britt, J. H. Roles of estradiol and gonadotropin-releasing hormone in controlling negative and positive feedback associated with the luteinizing hormone surge in ovariectomized pigs / Britt, J. H., Esbenshade, K. L., Ziecik, A. J. // Biology of reproduction. – 1991. –Vol. 45. –P. 478–485. DOI: 10.1095/biolreprod45.3.478.

42. Sekar N. Mechanisms underlying the steroidogenic synergy of insulin and luteinizing hormone in porcine granulosa cells: joint amplification of pivotal sterolregulatory genes encoding the low-density lipoprotein (LDL) receptor, steroidogenic acute regulatory (stAR) protein and cytochrome P450 side-chain cleavage (P450scc) enzyme / Sekar N., Garmey J. C., Veldhuis J. D. // Molecular and cellular endocrinology. –2000. –Vol. 159. –25-35. DOI: 10.1016/s0303-7207(99)00203-8


Review

For citations:


Kuzmina T.I., Prituzhalova A.O., Kurochkin A.A., Baranova E.I. HORMONAL PROFILE OF FOLLICLE FLUID OF DIFFERENT DIAMETERS IN RELATION TO VIABILITY AND LIPID CONTENT IN GRANULOSA CELLS OF SUS SCROFA DOMESTICUS. International Journal of Veterinary Medicine. 2024;(4):424-437. (In Russ.) https://doi.org/10.52419/issn2072-2419.2024.4.424

Views: 116


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)