Preview

International Journal of Veterinary Medicine

Advanced search

The relevance of the search for markers and indicators of thermal tolerance in cattle (review)

https://doi.org/10.52419/issn2072-2419.2025.2.190

Abstract

The efficiency of livestock farming, especially dairy farming, in the context of global warming is determined by a complex of factors: climatic conditions (heat stress), feed base, physiological state of animals and their genetic adaptability. Elevated temperatures provoke complex disorders in cattle, including metabolic disorders and decreased productivity. Against the background of climate change, the impact of heat stress on cattle is a serious problem for animal husbandry. The objective of the review: to consider the signs of adaptive qualities and thermotolerance of cattle. In the context of climate change, heat stress in cattle is becoming a major concern for the livestock industry. Studies of domestic and foreign authors show that when the temperature-humidity index (THI) exceeds the threshold value (> 66), animals experience physiological disorders (increase in rectal temperature, increased respiration, etc.), behavioral changes (decreased activity, reduced feed intake, etc.), biochemical shifts (increased cortisol, increased ketone bodies, etc.), and biochemical changes (increased cortisol, increased ketone bodies, etc.). ), biochemical shifts (increase in cortisol, increase in ketone bodies, etc.), decrease in productivity (decrease in milk yield, decrease in fat and protein mass fraction, change in fatty acid composition, decrease in live weight gain), deterioration of reproductive functions (decrease in fertilizability, and deterioration in sperm motility). Genetic studies have identified key markers of thermotolerance, including genes for heat shock proteins and factors (HSP and HSF), antioxidant enzymes, immunity and metabolism genes. However, selection is complicated by antagonism between productivity and stress tolerance. To minimize the consequences of negative effects of heat stress, it is recommended to control microclimate (ventilation, cooling) in livestock buildings, optimize feeding (introduction of antioxidant and vitamin supplements) and apply, along with traditional breeding methods, genetic selection using GWAS-analysis.

About the Authors

N Y. Safina
Tatar Scientific Research Institute of Agriculture “Kazan Scientific Center of Russia Academy of Sciences”
Russian Federation

Candidate of Biological Sciences, Senior Researcher



E. N. Makhonina
Tatar Scientific Research Institute of Agriculture “Kazan Scientific Center of Russia Academy of Sciences”
Russian Federation

Candidate of Biological Sciences, Senior Researcher 



S. K. Shakirov
Tatar Scientific Research Institute of Agriculture “Kazan Scientific Center of Russia Academy of Sciences”
Russian Federation

Doctor of Agricultural Sciences, Professor, Chief Researcher



E. R. Gainutdinova
Tatar Scientific Research Institute of Agriculture “Kazan Scientific Center of Russia Academy of Sciences”
Russian Federation

Graduate student, Researcher 



References

1. Shoulah S.A., Gaballa M.M.S., Al Assas M.M., Saqr S.A., Gattan H.S., Selim A. Histopathological changes and oxidative stress associated with Fascioliasis in bovines // Tropical Animal Health and Production. 2024. 56:48 DOI 10.1007/s11250-024-03896-1

2. Ullah M., Ibrahim M., Hussain T., Ullah A., Hussain A., Sahin T., Ahmad S., Khan A.M.A., Sadiq A.B, Shah K.A. Effect of heat stress on production performance in dairy animals // Biol. Clin. Sci. Res. J. 2024. 1078. DOI https://doi.org/10.54112/bcsrj.v2024i1.1078

3. Mukhanina E.N., Shakirov Sh.K., Safina N.Yu., Gaynutdinova E.R. Study of the negative effect of heat stress on dairy productivity of cows under different housing methods // International Bulletin of Veterinary Medicine. 2024. 4:509–517. DOI 10.52419/issn2072issn2072-2419.2024.4.509

4. Shakirov Sh.K., Shajtanov O.L., Sushencova M.A. et al. Modern technologies in feed and animal production, problems and ways to solve them (500 questions and answers): reference book. 4th ed., revised and enlarged. Kazan: AN RT Publishing House. 2023: 426. ISBN 978-5-9690-1188-5

5. Mader T.L., Davis M.S., Brown-Brandl T. Environmental factors influencing heat stress in feedlot cattle // Journal of Animal Science. 2006. 84(3):712–719. DOI: 10.2527/2006.843712x

6. Gujar G., Choudhary V.K., Vivek P., Sodhi M., Choudhary M., Tiwari M., Masharing N., Mukesh M. Characterization of thermo-physiological, haematological, and molecular changes in response to seasonal variations in two tropically adapted native cattle breeds of Bos indicus lineage in hot arid ambience of Thar Desert // Int J Biometeorol. 2022. 66:1515–1529. DOI 10.1007/s00484-022-02293-3

7. Shaji S., Sejian V., Bagath M., Manjunathareddy G.B., Kurien E.K., Varma G., Bhatta R. Summer season related to heat and nutritional stresses on the adaptive capability of goats based on blood biochemical response and hepatic HSP70 gene expression // Biol Rhythm Res. 2017. 48:65–83. DOI 10.1080/09291016.2016.1232340

8. Safina N.Yu., Mukhanina E.N., Gaynutdinova E.R., Shakirov Sh.K. Dynamics on dairy productivity and milk quality in cattle with different genotypes by HSP70.1 gene under thermal impact // Young scientists in solving urgent problems of science : Proceedings of the XIII International Scientific and Practical Conference, Vladikavkaz, Dec 08-10, 2023. 239–242.

9. Luo H., Hu L., Brito L.F., Dou J., Sammad A., Chang Y., Ma L., Guo G., Liu L., Zhai L., Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle // J. Anim. Sci. Biotechnol. 2022. 13:108. DOI 0.1186/s40104-022-00748-6

10. Țogoe D., Mincă N.A. The Impact of Heat Stress on the Physiological, Productive, and Reproductive Status of Dairy Cows. Agriculture. 2024. 14(8):1241. DOI 10.3390/agriculture14081241

11. Passamonti M.M., Somenzi E., Barbato M, Chillemi G., Colli L., Joost S, Milanesi M., Negrini R., Santini M., Vajana E., Williams J.L., Ajmone‐Marsan P. The Quest for Genes Involved in Adaptation to Climate Change in Ruminant Livestock // Animals. 2021. 11:2833. DOI 10.1152/japplphysiol.00073.2021

12. Fujii N., Kenny G.P., Amano T., Honda Y., Kondo N., Nishiyasu T. Na(+)-K(+)- ATPase plays a major role in mediating cutaneous thermal hyperemia achieved by local skin heating to 39°C // J Appl Physiol. 2021. 131:1408–1416. DOI 10.1152/japplphysiol.00073.2021

13. Wang Z., Wang G., Huang J., Li Q., Wang C., Zhong J. Novel SNPs in the ATP1B2 gene and their associations with milk yield, milk composition and heatresistance traits in Chinese Holstein cows // Mol Biol Rep. 2011. 38(3):1749–1755. DOI 10.1007/s11033-010-0289-6

14. Belousov A.I., Shkuratova I.A., Krasnoperov A.S., Oparina O.I., Malkov S.V. Influence of heat stress on cows during the dry and postpartum period. Bulletin of NSAU (Novosibirsk State Agrarian University). 2022. (3):93–101. DOI 10.31677/2072-6724-2022-64-3-93-101

15. Mylostyvyi R.V., Wrzecińska M., Samardžija M., Gutyj B.V., Yefimov V.H., Skliarov P.М. & Lieshchova M.O. Impact of heat stress on blood serum cortisol level in dairy cows // Theoretical and Applied Veterinary Medicine. 2024. 12(4):3–8. DOI 10.32819/2024.12016

16. Safina N., Shakirov Sh., Gaynutdinova E., Mukhanina E., Shayakhmetova L., Bagavieva E., Fattakhova Z., Akhmetov T., Zagidullin L., Haertdinov R. Polymorphism of the glutathioneperoxidase-1 gene (GPX-1 g. 189 T/C) and biochemical parameters of the blood serum of Holstein cattle // E3s web of conferences. 2023. 462:01018. DOI 10.1051/e3sconf/202346201018

17. Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid // Alexandria Journal of Medicine. 2018. 54(4):287– 293. DOI 10.1016/j.ajme.2017.09.001

18. Bohlouli M., Halli K., Yin T., Gengler N., König S. Genome-wide associations for heat stress response suggest potential candidate genes underlying milk fatty acid composition in dairy cattle // J. Dairy Sci. 2022. 105:3323–3340. DOI 10.3168/jds.2021-21152

19. Brown-Brandl T.M., Eigenberg R.A., Hahn G.L., Nienaber J.A., Mader T.L., Spiers D.E., Parkhurst A.M. Analyses of thermoregulatory responses of feeder cattle exposed to simulated heat waves // Int J Biometeorol. 2005. 49(5):285–296. DOI 10.1007/s00484-004-0250-2

20. Chen X., Li C., Fang T., Yao J. and Gu X. Effects of heat stress on endocrine, thermoregulatory, and lactation capacity in heattolerant and -sensitive dry cows // Front. Vet. Sci. 2024. 11:1405263. DOI 10.3389/fvets.2024.1405263

21. Dovolou E., Giannoulis T., Nanas I. and Georgios S. A. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows // Animals. 2023. 13(11):1846. DOI 10.3390/ani13111846

22. Carabaño M.J. The challenge of genetic selection for heat tolerance: the dairy cattle example // Adv Anim Biosci. 2016. 7:218– 222. DOI 10.1017/s2040470016000169

23. Nguyen T.T.T., Bowman P.J., HaileMariam M., Pryce J.E., Hayes B.J. Genomic selection for tolerance to heat stress in Australian dairy cattle // J Dairy Sci. 2016. 99:2849–2862. DOI 10.3168/jds.2015-9685

24. Santana M.L., Bignardi A.B., Pereira R.J., Stefani G., El Faro L. Genetics of heat tolerance for milk yield and quality in Holsteins // Animal. 2017. 11:4–14. DOI 10.1017/S1751731116001725

25. Cuellar C.J., Saleem M., Jensen L.M., Hansen P.J. Differences in body temperature regulation during heat stress and seasonal depression in milk yield between Holstein, Brown Swiss, and crossbred cows // J. Dairy Sci. 2023. 106:3625–3632. DOI 10.3168/jds.2022-22725

26. Kishore A., Sodhi M., Sharma A., Shandilya U.K., Mohanty A., Verma P., Mann S., Mukes M. Transcriptional Stability of Heat Shock Protein Genes and Cell Proliferation Rate Provides an Evidence of Superior Cellular Tolerance of Sahiwal (Bos indicus) Cow PBMCs to Summer Stress // Research & Reviews: Journal of Veterinary Sciences. 2016. 2(1):33–40.

27. Yudin N.S., Igoshin A.V., Larkin D.M. Molecular markers of adaptation to the cold climate in cattle // Letters to Vavilov Journal of Genetics and Breeding. 2023. 9(1):5–14. DOI 10.18699/LettersVJ-2023-9-02

28. Rowinski J.R., Rispoli L.A., Payton R.R., Schneider L.G., Schrick F.N., McLean K.J. Impact of an acute heat shock during in vitro maturation on interleukin 6 and its associated receptor component transcripts in bovine cumulus-oocyte complexes // J. Lannett Edwards Anim Reprod. 2021. 17 (4):e20200221. DOI 10.1590/1984-3143-AR2020-0221

29. Safina N.Yu., Shakirov Sh.K., Ravilov R.Kh., Sharafutdinov G.S. Associations of the SCD1 gene SNP with fatty acids composition of Holstein cows // Bio web of conferences. 2020. 27:00060. DOI 10.1051/bioconf/20202700060.

30. Wertheimer E., Sasson S., Cerasi E., Ben Neriah Y. The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins // Proc Natl Acad Sci USA. 1991. 88:2525–2529. DOI 10.1073/pnas.88.6.2525

31. Charoensook R., Gatphayak K., Sharifi A.R., Chaisongkram Ch., Brenig B., Knorr Ch. Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle // Trop Anim Health Prod. 2012. 44:921–928. DOI 10.1007/s11250-011-9989-8

32. Prasanna Sai J., Rao Viroji S.T., Prakash Gnana M., Rathod Suresh, Kalyani P., Reddy Rajith B. Association of SSCP Polymorphisms of HSP70 Gene with Physiological, Production and Reproduction Performance in Sahiwal and Crossbred Cows // Asian Journal of Dairy and Food Research. 2022. 41(2):150–155. DOI 10.18805/ajdfr.DR1796

33. De Campos J.S., Onasanya G.O., Ubong A. Afolabi T.Y., Adeyemi S.A., Akinfolarin A.M., Christian O.I. Potentials of single nucleotide polymorphisms and genetic diversity studies at HSP90AB1 gene in Nigerian White Fulani, Muturu, and N’Dama cattle breeds // Trop Anim Health Prod. 2024. 56:58. DOI 10.1007/s11250-024-03909-z

34. Sajjanar B., Deb R., Singh U., Kumar S., Brahmane M., Nirmale A., Kumar Bal S., Minhas P.S. Identification of SNP in HSP90AB1 and its Association with the Relative Thermotolerance and Milk Production Traits in Indian Dairy Cattle // Animal Biotechnology. 2015. 26(1):45–50. DOI 10.1080/10495398.2014.882846

35. Sailo L.I.D., Gupta A.V., Das R., Chaudhari M.V. Association of single nucleotide polymorphism of Hsp90ab1 gene with thermotolerance and milk yield in Sahiwal cows // African Journal of Biochemistry Research. 2015. 9(8):99–103. DOI 10.5897/AJBR2015.0837

36. Atalay S, Kök S: The comparison of polymorphisms in the heat shock transcription factor 1 gene of Turkish grey cattle and Holstein cattle // Kafkas Univ Vet Fak Derg. 2023. 29(5):429–435. DOI 10.9775/kvfd.2023.29256

37. Chelomina G.N. Landscape genomics (short review) // Biota and Environment of Natural Areas. 2021. 4:122-134. DOI 10.37102/2782-1978_2021_4_6


Review

For citations:


Safina N.Y., Makhonina E.N., Shakirov S.K., Gainutdinova E.R. The relevance of the search for markers and indicators of thermal tolerance in cattle (review). International Journal of Veterinary Medicine. 2025;(2):190-200. (In Russ.) https://doi.org/10.52419/issn2072-2419.2025.2.190

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)