Preview

International Journal of Veterinary Medicine

Advanced search

Evaluation of the effectiveness of colloidal silver for inhibiting biofilm formation in pathogens of bronchopneumonia in calves

https://doi.org/10.52419/issn2072-2419.2025.3.63

Abstract

Microorganisms capable of forming biofilms are significantly resistant to antibiotics and bacteriophages. Cattle diseases caused by biofilm-forming pathogens are a serious problem for livestock production, since the presence of biofilm complicates the use of available therapeutic drugs. In addition, due to differences in antibiotic concentrations in biofilms, microbial cells are often exposed to concentrations below inhibitory concentrations and can develop resistance. The global increase in resistance to antimicrobial and chemotherapeutic drugs is a serious problem in livestock production. The matrix of extracellular polymeric substances within biofilms can physically impede the penetration of antibiotics and bacteriophages, which also contributes to the survival and spread of multidrug-resistant bacteria among farm animals. Therefore, it is necessary to find effective methods to combat biofilm-forming microorganisms. Silver nanoparticles (Ag) are well known for their bactericidal action and ability to reduce the synthesis of bacterial biofilms. Therefore, colloidal silver consisting of silver nanoparticles is an attractive addition to existing therapeutic and preventive measures in animal husbandry. In the course of the study, we assessed the intensity of biofilm formation of causative agents of calf bronchopneumonia (Escherichia coli (n = 30), Klebsiella pneumoniae (n = 10), Proteus mirabilis (n = 15), Proteus vulgaris (n = 10), Pseudomonas aeruginosa (n = 7), Moraxella bovoculi (n = 5), Mannheimia haemolytica (n = 6)) using the spectrophotometric method in the absence of inhibitors and with the introduction of colloidal silver. The obtained results demonstrate the potential possibility of including colloidal silver in a complex of therapeutic and preventive measures to combat pathogens of bronchopneumonia in young cattle that are capable of forming a biofilm.

About the Authors

M. V. Kiyanchuk
St. Petersburg State University of Veterinary Medicine
Russian Federation

Postgraduate student of the Department Microbiology, Virology and Immunology, assistant of the Department of Biochemistry and Physiology



M. S. Borisova
St. Petersburg State University of Veterinary Medicine
Russian Federation

Assistant of the Department Microbiology, Virology and Immunology, Ph.D. of Veterinary Sciences



A. A. Sukhinin
St. Petersburg State University of Veterinary Medicine
Russian Federation

Grand PhD in Biology, Full Professor, Head of the Department of Microbiology, Virology and Immunology



References

1. Adams, J L, and R J McLean. “Impact of rpoS deletion on Escherichia coli biofilms.” Applied and environmental microbiology vol. 65,9 (1999): 4285-7. doi:10.1128/AEM.65.9.4285-4287.1999

2. Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML. Control of Biofilm Formation: Antibiotics and Beyond. Appl Environ Microbiol. 2017 Jan 17;83 (3):e02508-16. doi: 10.1128/AEM.02508-16. Erratum in: Appl Environ Microbiol. 2017 Mar 2;83(6):e00165-17. doi: 10.1128/AEM.00165-17. PMID: 27864170; PMCID: PMC5244297.

3. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002 Apr;15(2):167-93. doi: 10.1128/CMR.15.2.167-193.2002. PMID: 11932229; PMCID: PMC118068.

4. Evans DJ, Allison DG, Brown MR, Gilbert P. Effect of growth-rate on resistance of gram-negative biofilms to cetrimide. J Antimicrob Chemother. 1990 Oct;26(4):473-8. doi: 10.1093/jac/26.4.473. PMID: 2254220.

5. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016 Aug 11;14(9):563-75. doi: 10.1038/nrmicro.2016.94. PMID: 27510863.

6. Kalishwaralal K, BarathManiKanth S, Pandian SR, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces. 2010 Sep 1;79(2):340-4. doi: 10.1016/j.colsurfb.2010.04.014. Epub 2010 Apr 22. PMID: 20493674.

7. Limayem, Alya et al. “Evaluation of bactericidal effects of silver hydrosol nanotherapeutics against Enterococcus faecium 1449 drug resistant biofilms.” Frontiers in cellular and infection microbiology vol. 12 1095156. 11 Jan. 2023, doi:10.3389/fcimb.2022.1095156

8. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005 Oct;16 (10):2346-53. doi: 10.1088/0957-4484/16/10/059. Epub 2005 Aug 26. PMID: 20818017.

9. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998 May;28(3):449-61. doi: 10.1046/j.1365-2958.1998.00797.x. PMID: 9632250.

10. Rice, Scott A et al. “Next-generation studies of microbial biofilm communities.” Microbial biotechnology vol. 9,5 (2016): 677 -80. doi:10.1111/1751-7915.12390

11. Suci PA, Mittelman MW, Yu FP, Geesey GG. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994 Sep;38(9):2125-33. doi: 10.1128/ AAC.38.9.2125. PMID: 7811031; PMCID: PMC284696.

12. Townsley, Loni, and Elizabeth A Shank. “Natural-Product Antibiotics: Cues for Modulating Bacterial Biofilm Formation.” Trends in microbiology vol. 25,12 (2017): 1016- 1026. doi:10.1016/j.tim.2017.06.003

13. Tresse O, Jouenne T, Junter GA. The role of oxygen limitation in the resistance of agar -entrapped, sessile-like Escherichia coli to aminoglycoside and beta-lactam antibiotics. J Antimicrob Chemother. 1995 Sep;36 (3):521-6. doi: 10.1093/jac/36.3.521. PMID: 8830016.

14. van der Fels-Klerx, H J et al. “An economic model to calculate farm-specific losses due to bovine respiratory disease in dairy heifers.” Preventive veterinary medicine vol. 51,1-2 (2001): 75-94. doi:10.1016/s0167-5877(01)00208-2

15. Antimicrobial activity of cefinel in respiratory diseases of calves / E. E. Aishpur, S. A. Nychik, N. V. Sapon, D. O. Topol // Veterinary Biotechnology. - 2015. - № 26(26). - С. 12-19. (In Russ.)

16. Antonevsky I. V., Pleshakova V. I., Leshcheva N. A. BIOPLENKOBRASING MICROFLORA IN THE STRUCTURE OF MICROORGANISMS EXCLUDED FROM AGRICULTURAL AND Pets // Scientific Notes of the Bauman State Academy of Veterinary Medicine. 2025. №1. URL: https://cyberleninka.ru/article/n/bioplenkoobrazuyuschaya-mikroflora-vstrukture-mikroorganizmov-vydelennyh-otselskohozyaystvennyh-i-domashnihzhivotnyh (date of address: 02.06.2025). (In Russ.)

17. Galimzyanov Khalil Mingalievich, Bashkina Olga Aleksandrovna, Dosmukhanova Elmira Galievna, Abdrakhmanova Radmila Okhasovna, Demina Yulia Zaurbekovna, Daudova Adilya Jigangirovna, Alyoshkin Andrey Vladimirovich, Nesvizhsky Yuri Vladimirovich, Rybkin Vladimir Semyonovich, Afanasyev Stanislav Stepanovich, Chikobava Merab Georgievich, Arshba Ilona Murmanovna, Rubalsky Maxim Olegovich, Rubalsky Evgeny Olegovich Clinical significance of biofilm formation in bacteria // Astrakhan Medical Journal. 2018. №4. URL: https://cyberleninka.ru/article/n/klinicheskoe-znachenie-bioplenkoobrazovaniya-ubakteriy (date of address: 17.05.2025). (In Russ.)

18. Ginzheimer Irina Aleksandrovna, Zaitseva Elena Vladimirovna ANALYSIS OF THE DISTRIBUTION OF ESKAPE STAMES AND DEFINITION OF THEIR RESISTANCE TO ANTIBIOTICS // Scientific Notes of Bryansk State University. 2023. №4 (32). URL: https://cyberleninka.ru/article/n/analiz-rasprostranennosti-shtammov-eskape-i-opredelenie-ih-ustoychivosti-kantibiotikam (date of address: 04.06.2025). (In Russ.)

19. Kiyanchuk, M. V. Analysis of biochemical, cultural and morphological properties of mannheimia haemolytica isolated from nasopharyngeal mucus of calves / M. V. Kiyanchuk // Veterinary laboratory practice: Collection of articles and reports at the international scientific-practical conference, St. Petersburg, 17-21 April 2023. - St. Petersburg: St. Petersburg State Academy of Veterinary Medicine, VVM, 2023. - С. 29- 31. - EDN QMFZUC. (In Russ.)

20. Patent RU 2 795 607 C1. Method of research of Staphylococcus aureus biofilm control by a preparation based on silver nanoparticles and dimethyl sulfoxide. Applicant: Nefedova E. V.; published 2023. (In Russ.)

21. Patent RU2441650C1. Method of treatment of bronchopneumonia in calves. Applicant: Retsky M. I.; published 2010. (In Russ.)

22. Filipov I. G., Chekhodaridi F. N. Bronchopneumonia in calves (DIAGNOSTICS, SYMPTOMATICS, TREATMENT) // Scientific Notes of the Bauman KSAVM. 2022. №1. URL: https://cyberleninka.ru/article/n/bronhopnevmoniya-telyat-diagnostikasimptomatika-lechenie (date of address: 28.05.2025). (In Russ.)

23. Chebotar Igor V., Mayansky A. N., Konchakova E. D., Lazareva A. V. V., Chistyakova V. P. Antibiotic resistance of biofilm bacteria // KMAH. 2012. №1. URL: https://cyberleninka.ru/article/n/antibiotikorezistentnost-bioplyonochnyhbakteriy (date of address: 28.05.2025). (In Russ.)

24. Shamina Olga Vyacheslavovna, Samoylova Ekaterina Aleksandrovna, Novikova Irina Evgenievna, Lazareva Anna Valeryevna KLEBSIELLA PNEUMONIAE: MICROBIOLOGICAL CHARACTERISTICS, ANTIBIOTIC RESISTANCE AND VIRULENCE // Russian Paediatric Journal. 2020. №3. URL: https://cyberleninka.ru/article/n/klebsiella-pneumoniaemikrobiologicheskaya-harakteristikaantibiotikorezistentnost-i-virulentnost (date of reference: 28.05.2025). (In Russ.)


Review

For citations:


Kiyanchuk M.V., Borisova M.S., Sukhinin A.A. Evaluation of the effectiveness of colloidal silver for inhibiting biofilm formation in pathogens of bronchopneumonia in calves. International Journal of Veterinary Medicine. 2025;(3):63-71. (In Russ.) https://doi.org/10.52419/issn2072-2419.2025.3.63

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)