Preview

International Journal of Veterinary Medicine

Advanced search

Analysis of the polymorphism of the LIPL32 gene of pathogenic leptospira for the development of a real-time polymerase chain reaction test system

https://doi.org/10.52419/issn2072-2419.2025.3.72

Abstract

The purpose of this work was to study the polymorphism of the LipL32 gene of various pathogenic leptospira serovars, as well as to develop a prototype test system for the indication of this gene using the real-time polymerase chain reaction method with an assessment of its stability. The objects of the study were 245 nucleotide sequences of the LipL32 gene of Leptospira interrogans, DNA samples of leptospira serovars Pomona, Grippotyphosa, Canicola, Bataviae and Tarassovi. Based on the results of bioinformatic analysis of 245 nucleotide sequences of the LipL32 gene, it was established that this gene is a highly conserved region of the genome of the causative agent of leptospirosis. To indicate the pathogen under study for this gene by RT-PCR, a marker locus (lipoprotein L32 region) with a size of 173 nucleotide pairs was determined. Within this site, oligonucleotide primers and a probe were developed, which, according to multiple alignment of the amplified locus, turned out to be identical for most of the analyzed nucleotide sequences of the LipL32 L. interrogans gene. BLAST analysis of the sequenced nucleotide sequences of the pathogenic leptospira serovars Pomona, Grippotyphosa, Canicola, Bataviae and Tarassovi showed that the identity of the lipoprotein L32 gene region amplified by engineered oligonucleotides of the above isolates with DNA sequences of the causative agent of leptospirosis stored in the NCBI database ranged from 95.74 to 98.95%. Using the developed oligonucleotides and a fluorescent probe, a prototype test system for the detection of pathogenic leptospires by PCR-RV was constructed. It was found that the specificity of the test kit presented in this work was 100%, and the sensitivity could reach 5·102 copies of DNA per ml of the test material. The stability assessment of the test system showed that the variation coefficients of the minimum threshold values did not exceed 10%, indicating that the kit components were stable during long-term storage.

About the Authors

R. I. Shangaraev
Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological safety»
Russian Federation

Candidate of Veterinary Sciences, Researcher



K. V. Usoltsev
Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological safety»
Russian Federation

Candidate of Veterinary Sciences, Leading Researcher



K. S. Khaertynov
Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological safety»
Russian Federation

Candidate of Biological Sciences, Leading Researcher



E. N. Pankova
Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological safety»
Russian Federation

Candidate of Biological Sciences, Leading Researcher



M. E. Gorbunova
Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological safety»
Russian Federation

Candidate of Biological Sciences, Researcher



N. I. Khammadov
Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological safety»
Russian Federation

Candidate of Biological Sciences, Leading Researcher



K. A. Osyanin
Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological safety»
Russian Federation

Candidate of Biological Sciences, Leading Researcher 



References

1. Ananyina, Yu.V. Parasitic and freeliving Leptospira (Leptospiraceae): ecological and genetic features / Yu. V. Ananyina // Zoological Journal, 2010; 89(1): 48-52. (In Russ.).

2. Ulsenheimer B.C., Tonin A.A, von Laer A.E., Fernandes Dos Santos H., Antônio Sangioni L., Fighera R., Yuri Dos Santos M., Isabel Brayer Pereira D., Pötter L., De Avila Botton S. Molecular detection and phylogenetic analysis of Leptospira interrogans and Leptospira borgpetersenii in cats from Central region of Rio Grande do Sul state, Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2025; 116. 102286. https://doi:10.1016/j.cimid.2024.102286.

3. Oryntaev, K.B., Ermagambetova S.E., Mentai A.Specific prevention of bovine leptospirosis. Bulletin of the Kyrgyz National Agrarian University named after K.I. Scriabin. 2017; 4(45): 260-261. (In Russ.).

4. Shangaraev R. I., Usoltsev K.S. Khaertynov K.S, Gorbunova M.E., Khammadov N.I., Safina R.F., Osyanin K.A. Review of the epizootic situation of leptospirosis in the Russian Federation from 2013 through 2023. Bulletin of Altai State Agricultural University. 2024; 10(240): 65-72. https://doi:10.53083/1996-4277-2024-240-10-65-72. (In Russ.).

5. Samsonova, A.P., Petrov, E.M. Comparison of the effectiveness of diagnostic methods for leptospirosis at different times from the moment of the disease Bacteriology. 2023; 8(3): 99. (In Russ.).

6. Nurlygayanova, G.A. Belousov V.I., Sharypov A.S. Results of laboratory diagnostics of animal leptospirosis by various methods in the Russian Federation for 2021. Veterinary, Zootechnics and Biotechnology. 2023; 9: 75-86. https://doi:10.36871/vet.zoo.bio.202309009. (In Russ.).

7. Hammadov N. I., Gorbunova M. E., Salmanova G. R., Farhrutdinov N.I., Gulukin A.M., Galeeva A.G., Gromova E.A. Design of specific primers for PCR diagnostics of classical swine fever / [et al.] // The Veterinarian. 2024; 3: 41-46. https://doi:10.33632/1998-698X_2024_3_41. (In Russ.).

8. Gromova E.A., Mirgazov D.A, Dodonova E.A., Elizarova I.A., Gorbunova M.E., Osyanin K.A. Development of a multiplex RTPCR test system for detecting the causative agent of brucellosis. The Veterinarian. 2024; 3: 34-40. https://doi 10.33632/1998-698X_2024_3_34. (In Russ.).

9. Khaki P., Rahimi-Zarchi F., Moradi Bidhendi S., Gharakhani M. Application of a Multiplex PCR Assay for Molecular Identification of Pathogenic and Non-Pathogenic Leptospires based on LipL32 and 16S rRNA Genes. Arch. Razi. Inst. 2023; 78(1): 413- 418. https://doi: 10.22092/ARI.2022.359211.2388.

10. Podgoršek D., Ružić-Sabljić E., Logar M., Pavlović A., Remec T., Baklan Z., Pal E., Cerar T. Evaluation of real-time PCR targeting the LipL32 gene for diagnosis of Leptospira infection. BMC Microbiol. 2020; 20(1). https://doi:10.1186/s12866-020-01744-4.

11. Latifah I., Abdul Halim A., Rahmat M.S., Nadia M.F., Ubil Z.E., Asmah H., Shafariatul Akmar I., Picardeau M., Siti Haslina O., Nasir M.A. Isolation by culture and PCR identification of LipL32 gene of pathogenic Leptospira spp. in wild rats of Kuala Lumpur. Malaysian J. Pathol. 2017; 39 (2): 161- 166.

12. Vedhagiri K., Natarajaseenivasan K., Chellapandi P., Prabhakaran S.G., Selvin J., Sharma S., Vijayachari P. Evolutionary implication of outer membrane lipoproteinencoding genes ompL1, UpL32 and lipL41 of pathogenic leptospira species. Genomics Proteomics Bioinf. 2009; 7: 96-106. https://doi:10.1016/S1672-0229(08)60038-8.

13. Picardeau M., Bulach D.M, Bouchier C., Zuerner R.L., Zidane N., Wilson P.J., Creno S., Kuczek E.S., Bommezzadri S., Davis J.C., McGrath A., Johnson M.J., BoursauxEude C., Seemann T., Rouy Z., Coppel R.L., Rood J.I., Lajus A., Davies J.K., Médigue C., Adler B. Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis PLoS. ONE. 2008; 3. https://doi:10.1371/journal.pone.0001607.

14. Nally J.E., Whitelegge J.P., Bassilian S., Blanco D. R., Lovett M. A. Characterization of the outer membrane proteome of Leptospira interrogans expressed during acute lethal infection Infect. Immun. 2007; 75766- 75773. https://doi:10.1128/IAI.00741-06.

15. Kumaran S.K., Faizal Abu Bakar M., Mohd-Radil H., Mat-Sharani S., Sakinah S., Poorani K., Alsaeedy H., Peli A., Seoh Wei T., Pooi Ling M., Awang Hamat R., Kumari Neela V., Higuchi A., Alarfaj A.A., Rajan M., Benelli G., Arulselvan P., Suresh Kumar S. 3D modelling of the pathogenic Leptospira protein LipL32: A bioinformatics approach. Acta Tropica. 2013; 76: 433-439. https://doi.org/10.1016/j.actatropica.2017.09.011.

16. Vaganova A.N., Freilikhman O.A., Stoyanova N.A., Tokarevich N.K. Genetics: interspecifi interspecifi c polymorphism of gene lipl32 restriction profiles of pathogenic leptospires. Bulletin of Experimental Biology and Medicine. 2010; 149(5): 543-545. (In Russ.).


Review

For citations:


Shangaraev R.I., Usoltsev K.V., Khaertynov K.S., Pankova E.N., Gorbunova M.E., Khammadov N.I., Osyanin K.A. Analysis of the polymorphism of the LIPL32 gene of pathogenic leptospira for the development of a real-time polymerase chain reaction test system. International Journal of Veterinary Medicine. 2025;(3):72-83. (In Russ.) https://doi.org/10.52419/issn2072-2419.2025.3.72

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)