Preview

International Journal of Veterinary Medicine

Advanced search

Design of duplex real-time PCR for the detection of chicken meat in mixed meat products

https://doi.org/10.17238/issn2072-2419.2021.3.113

Abstract

Laboratory PCR techniques used to control the quality of meat products typically detect mitochondrial DNA sequences (mtDNA). The multiplicity of mtDNA copies in the cell provides such PCR techniques a high sensitivity. The high sensitivity of PCR detecting chicken mtDNA can lead to a positive result when applied to analyze mixed meat products containing chicken eggs. Many meat products, particularly some cooked sausages, do not contain chicken meat, while their recipes include chicken eggs or melange. In such cases, PCR detecting mtDNA cannot distinguish correctly the recipe ingredients from the food fraud with cheaper chicken meat. In this work, we carried out a design of realtime PCR which uses nuclear sequences as a target. A separate task was to select primers for PCR for internal control, for which we selected a nuclear sequence conserved for animals and birds as a target. Here we show that using a unique nuclear sequence as a target sequence allows getting rid of positive results in PCR, when the template is DNA, isolated from chicken eggs or mélange. The designed real-time PCR can be used in protocols applied to detect the falsification of the mixed meat products by chicken meat.

About the Authors

M. A. Gergel
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed
Russian Federation


E. V. Zaitseva
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed
Russian Federation


I. V. Soltynskaya
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed
Russian Federation


V. Putintseva
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed
Russian Federation


E. V. Krylova
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed
Russian Federation


I. A. Timofeeva
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed
Russian Federation


N. A. Kirsanova
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed
Russian Federation


T. N. Akinina
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed
Russian Federation


F. I. Vasilevich
Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Scriabin
Russian Federation


A. N. Bogomazova
All-Russian State Center for Quality and Standardization of Medicines for Animals and Feed; Federal Scientific and Clinical Center of Physical and Chemical Medicine
Russian Federation


References

1. Фомина Т. А., Минаев М. Ю. Система идентификации для контроля халяльной мясной продукции //Мясная индустрия. – 2011. – №. 3. – С. 32-34.

2. Красюков Ю. Н. и др. Качественная видовая идентификации яиц в яичных продуктах методом полимеразной цепной реакции //Новое в технике и технологии переработки птицы и яиц. – 2011. –С. 51-83.

3. López-Andreo M. et al. Detection and quantification of meat species by qPCR in heat-processed food containing highly fragmented DNA //Food Chemistry. – 2012. – Т. 134. – №. 1. – С. 518-523.

4. Soares S. et al. A SYBR Green real-time PCR assay to detect and quantify pork meat in processed poultry meat products //Meat Science. – 2013. –Т. 94. – №. 1. –С. 115-120.

5. Floren C. et al. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR) //Food chemistry. – 2015. –Т. 173. –С. 1054-1058.

6. Yamoah F., Yawon D. Assessing supermarket food shopper reaction to horsemeat scandal in the UK //International Review of Management and Marketing. – 2014.

7. Kocher T. D. et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers //Proceedings of the National Academy of Sciences. – 1989. – Т. 86. – №. 16. – С. 6196-6200.

8. D'Erchia A. M. et al. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity // Mitochondrion. – 2015. – Т. 20. – С. 13-21.

9. ГОСТ 20402-2014 Колбасы вареные фаршированные. Технические условия. — М.: Стандартинформ, 2019. — 18 с

10. ГОСТ 23670-2019 Изделия колбасные вареные мясные. Технические условия. — М.: Стандартинформ, 2019. — 32 с

11. ГОСТ Р 54646-2011 Колбасы ливерные. Технические условия. — М.: Стандартинформ, 2012. — 18 с.

12. Klein S., Grossmann R. Cell number and sex ratio in unfertilized chicken eggs (Gallus gallus domesticus) //Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. – 2008. –Т. 309. – №. 1. –С. 47-54.

13. Iwobi A. et al. A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat //Food chemistry. – 2015. – Т. 169. – С. 305-313.

14. Iwobi A. et al. A multiplex real-time PCR method for the quantitative determination of equine (horse) fractions in meat products // Food Control. – 2017. – Т. 74. – С. 89-97

15. Druml B. et al. A novel reference realtime PCR assay for the relative quantification of (game) meat species in raw and heatprocessed food //Food Control. – 2016. – Т. 70. – С. 392-400

16. Laube I. et al. Development and design of a ‘ready‐to‐use’reaction plate for a PCR‐ based simultaneous detection of animal species used in foods //International journal of food science & technology. – 2007. – Т. 42. – №. 1. – С. 9-17.

17. Amaral J. S. et al. Quantitative detection of pork meat by EvaGreen real-time PCR to assess the authenticity of processed meat products //Food Control. – 2017. – Т. 72. – С. 53-61

18. Sievers F., Higgins D. G. Clustal omega //Current protocols in bioinformatics. – 2014. – Т. 48. – №. 1. – С. 3.13. 1-3.13. 16.

19. Okonechnikov K. et al. Unipro UGENE: a unified bioinformatics toolkit // Bioinformatics. – 2012. – Т. 28. – №. 8. – С. 1166-1167.

20. https://eurofinsgenomics.eu/en/ecom/tools/pcr-primer-design/

21. Ye J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction //BMC bioinformatics. – 2012. – Т. 13. – №. 1. – С. 134.

22. Visel A. et al. VISTA Enhancer Browser—a database of tissue-specific human enhancers //Nucleic acids research. – 2007. – Т. 35. – №. suppl_1. – С. D88-D92.

23. Madden T. The BLAST sequence analysis tool //The NCBI Handbook [Internet]. 2nd edition. – National Center for Biotechnology Information (US), 2013.

24. Солтынская И. В. и др. Секвенирование ДНК для определения видовой принадлежности мяса //Ветеринария. – 2018. – №. 1. – С. 55-61.

25. Bejerano G. et al. Ultraconserved elements in the human genome //Science. – 2004. – Т. 304. – №. 5675. – С. 1321-1325.

26. Venkatesh B., Yap W. H. Comparative genomics using fugu: a tool for the identification of conserved vertebrate cis‐regulatory elements //Bioessays. – 2005. – Т. 27. – №. 1. – С. 100-107.

27. Pennacchio L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences //Nature. – 2006. – Т. 444. – №. 7118. – С. 499-502.

28. Stults D. M. et al. Genomic architecture and inheritance of human ribosomal RNA gene clusters //Genome research. – 2008. – Т. 18. – №. 1. – С. 13-18.

29. Leonard J. A. et al. Animal DNA in PCR reagents plagues ancient DNA research // Journal of Archaeological Science. – 2007. – Т. 34. – №. 9. – С. 1361-1366.


Review

For citations:


Gergel M.A., Zaitseva E.V., Soltynskaya I.V., Putintseva V., Krylova E.V., Timofeeva I.A., Kirsanova N.A., Akinina T.N., Vasilevich F.I., Bogomazova A.N. Design of duplex real-time PCR for the detection of chicken meat in mixed meat products. International Journal of Veterinary Medicine. 2021;(3):113-120. (In Russ.) https://doi.org/10.17238/issn2072-2419.2021.3.113

Views: 279


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)