Современные подходы при получении и криоконсервации эмбрионов крупного рогатого скота in vitro
https://doi.org/10.17238/issn2072-2419.2021.3.192
Аннотация
В настоящее время трансплантация эмбрионов сельскохозяйственных животных широко применяется в воспроизводстве во многих странах [1]. Однако, из-за не высокой эффективности и низкой приживляемости эмбрионов, в сравнении с искусственным осеменением, она используется преимущественно как дополнительный биотехнологический метод, направленный на более рациональное использование генетически ценных племенных животных и ускорения селекции, особенно в отношении племенного ядра [1–7]. Использование технологии получения эмбрионов крупного скота in vitro (IVP – in vitro produced) позволяет значительно ускорить интенсивность селекции животных и является актуальной темой для изучения [8–10]. Исследования многих ученых направлены на изучение аспектов, связанных с фолликулогенезом, стимуляцией полиовуляции, и факторов, влияющих на эмбрионы и ооциты, позволяющие увеличить эффективность данной процедуры [11– 15]. Однако, современные лидеры в репродуктивных технологиях, такие как Agtech, Inc., IETS, Animal Reproduction Laboratory (Colorado State University) и другие, не дают конкретных инструкций и рекомендаций по производству эмбрионов in vitro, а получаемые достижения в этой сфере описываются в основном в научных публикациях. В статье представлен обзор ключевых этапов современных биотехнологических методов ускоренного воспроизводства высокоценных сельскохозяйственных животных, включая пункцию фолликулов и аспирацию ооцитов (OPU – ovum pic-up), созревание ооцитов в лабораторных условиях (IVM – in vitro maturation), подготовку спермы и оплодотворение ооцитов (IVF – in vitro fertilization), культивирование эмбрионов (IVC – in vitro culture), а также криоконсервацию полученных эмбрионов. Представленный в публикации литературный обзор затрагивает вопросы фолликулогенеза и овогенеза животных, и некоторые принципы нейроэндокринной регуляции эстрального цикла и их взаимосвязь при использовании различных методик получения ооцитов. Публикации различных авторов по данной тематике позволили обобщить используемые методы и представить их в статье в форме сводных таблиц, в которых описаны различия температурных режимов инкубирования, условия транспортировки биоматериала, рассмотрены основные физические параметры внешней среды культивирования ооцитов, их оплодотворения и дальнейшего развития, освещены характеристики и состав различных питательных сред, описаны методы подготовки спермы для проведения оплодотворения ооцитов, а также обобщены сводные данные по калибровке рабочих растворов при центрифугировании спермы в градиентах плотности, в том числе определены некоторые закономерности криоконсервации эмбрионов различными методами.
Ключевые слова
Список литературы
1. Зиновьева Н.А., Позябин С.В., Чинаров Р.Ю. Вспомогательные репродуктивные технологии: история становления и роль в развитии генетических технологий в скотоводстве. Сельскохозяйственная биология, 2020, 55(2): 225–242 (doi:0.15389/agrobiology.2020.2.225eng).
2. Никиткина Е.В., Пестунович Е.М., Егиазарян А.В. Актуальность трансплантации эмбрионов. Сельскохозяйственные вести, 2011: 2–3.
3. Никиткина Е.В., Пестунович Е.М., Крутикова А.А., Племяшов К.В. Трансплантация эмбрионов животных: проблемы и пути решения. Аграрная наука на современном этапе состояние, проблемы, перспективы, 2018: 131–135.
4. Заертяев Б.П., Никиткина Е.В., Ялуга В.Л. Эффективность биотехнологических методов в воспроизводстве и селекции молочного скота. Разведение и генетика животных, 1999, 31–32: 82–83.
5. Хакимов И.Н., Баймишев Х.Б., Салимова О.С., Бададин О.В. Использование метода трансплантации эмбрионов для создания высокопродуктивных стад мясного скота. Вестник Тюменской государственной сельскохозяйственной академии, 2008, 2: 19–22.
6. Бригида А.В. Сорокин В.И., Ковальчук С.Н., Пантюх К.С., Рукин И.В., Рожин К.А. Прогнозирование эмбриопродуктивности коров-доноров на основании эхографической характеристики яичников. Сельскохозяйственная биология, 2018, 53 (4): 753–761 (doi:10.15389/agrobiology.2018.4.753rus).
7. Singina G.N., Sergiev P.V., Lopukhov A.V., Rubtsova M.P., Taradajnic N.P., Ravin N.V., Shedova E.N., Taradajnic T.E., Polejaeva I.A., Dozev A.V., Brem G., Dontsova O.A., Zinovieva N.A. Production of a Cloned Offspring and CRISPR/Cas9 Genome Editing of Embryonic Fibroblasts in Cattle. Biochemistry, biophysics, and molecular biology, 2021, 496(1): 48–51 (doi:10.1134/S1607672921010099).
8. Wright R.W., Curtis J.L. Cattle Embryo Transfer Procedure. Journal of Range Management, 1992, 45(5): 510 (doi: 10.2307/4002916).
9. Kafi M., McGowan M.R. Factors associated with variation in the superovulatory response of cattle. Animal Reproduction Science, 1997, 48(2–4): 137–157 (doi:10.1016/S0378-4320(97)00033-X).
10. Seidel G.E., Seidel S. Training manual for embryo transfer in cattle. Animal Reproduction Laboratory, Colorado State University, USA, 2004.
11. Martens G., Nohner H.P., Leiding C., Schneider F., Becker F., Nuernberg G., Kanitz W. 326 Optimizing frequency of fsh application for superovulatory treatment in cattle. Reproduction, Fertility and Development, CSIRO Publishing, 2005, 17(2): 313 (doi:10.1071/rdv17n2ab326).
12. Naranjo C., Fernando M.P., Felipe C.S., Rodolfo A.A. Concepción Embryo production after superovulation of bovine donors with a reduced number of FSH applications and an increased eCG dose. Theriogenology, 2020, 141: 168–172 (doi:10.1016/j.theriogenology.2019.09.018).
13. Mikkola M., Taponen J. Embryo yield in dairy cattle after superovulation with Folltropin or Pluset. Theriogenology, 2017, 88: 84–88 (doi:10.1016/j.theriogenology.2016.09.052).
14. Kasimanickam R., Kasimanickam V., Kastelic J. P., Ramsey K. Metabolic biomarkers, body condition, uterine inflammation and response to superovulation in lactating Holstein cows. Theriogenology, 2020, 146: 71–79 (doi:10.1016/j.theriogenology.2020.02.006).
15. Sikora M., Król J., Nowak M., Stefaniak T., Aubertsson G., Kozdrowski R. The usefulness of uterine lavage and acute phase protein levels as a diagnostic tool for subclinical endometritis in Icelandic mares. Acta Veterinaria Scandinavica, 2016, 58(1): 50 (doi:10.1186/s13028-016-0233-4).
16. Gosden R.G., Telfer E. Numbers of follicles and oocytes in mammalian ovaries and their allometric relationships. Journal of Zoology, 1987, 211(1): 169–175 (doi:10.1111/j.1469-7998.1987.tb07460.x).
17. Monniaux D.,Monget P., Besnard N., Huet C., Pisselet C. Growth factors and antral follicular development in domestic ruminants. Theriogenology, 1997, 47(1): 3–12 (doi:10.1016/S0093-691X(96)00334-2).
18. Parrish J.J., Kim C.I., Bae I.H. Current concepts of cell-cycle regulation and its relationship to oocyte maturation, fertilization and embryo development. Theriogenology, 1992, 38(2): 277–296 (10.1016/0093-691X(92)90236-K).
19. Pavlok A., Lucas‐Hahn A., Niemann H. Fertilization and developmental competence of bovine oocytes derived from different categories of antral follicles. Molecular Reproduction and Development, 1992, 31(1): 63–67 (doi:10.1002/mrd.1080310111).
20. Eppig J.J., Schroeder A.C. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biology of Reproduction, 1989, 41(2): 268–276 (doi:10.1095/biolreprod41.2.268).
21. Daniel S.A.J., Armstrong D.T., Gore-Langton R.E. Growth and development of rat oocytes in vitro. Gamete Research, 1989, 24(1):109–121 (doi:10.1002/mrd.1120240113).
22. Nayudu P.L., Osborn S.M. Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro. Journal of Reproduction and Fertility, 1992, 95(2): 349–362 (doi:10.1530/jrf.0.0950349).
23. Bellin M.E., Ax R.L. Chemical characteristics of follicular glycosaminoglycans. Advances in experimental medicine and biology, 1987, 219: 731–735 (doi:10.1007/978-1-4684-5395-9_51).
24. Concentrations of High Density Lipoproteins Vary Among Follicular Sizes in the Bovine [Electronic resource]. URL: https://www.researchgate.net/publication/19480669_Concentrations_of_High_Density_Lipoproteins_Vary_Among_Follicular_Sizes_in_the_Bovine (accessed: 12.03.2021).
25. Brantmeier S.A., Grummer R.R., Ax R.L. Concentrations of High Density Lipoproteins Vary Among Follicular Sizes in the Bovine. Journal of Dairy Science, 1987, 70(10): 2145–2149 (doi:10.3168/jds.S0022-0302(87)80266-7).
26. Alterations in intrafollicular levels of different molecular mass forms of inhibin during development of follicular- and lutealphase dominant follicles in heifers | Request PDF [Electronic resource]. URL: https://www.researchgate.net/publication/14415221_Alterations_in_intrafollicular_levels_of_different_molecular_mass_forms_of_inhibin_during_development_of_follicular-_and_lutealphase_dominant_follicles_in_heifers(accessed: 12.03.2021).
27. Andersen M.M. et al. Protein composition in the fluid of individual bovine follicles. Journal of Reproduction and Fertility, 1976, 48(1): 109–118 (doi:10.1530/jrf.0.0480109).
28. Машталер Д.В., Голубец Л.В., Дешко А.С., Хромов Н.И. Некоторые аспекты трансвагинальной аспирации ооцитов крупного рогатого скота. Farm News, 2018: 33–36.
29. Сметанина И.Г., Татаринова Л.В. Влияние сыворотки крови на созревание ооцитов и развитие эмбрионов крупного рогатого скота in vitro. Проблемы биологии продуктивных животных, 2018: 45–53 (doi:10.25687/1996-6733.prodanimbiol.2018.3.45-53).
30. Ротарь Л.Н., Souza J.F. Морфологическая характеристика ооцит-кумулюсных комплексов Bos taurus и Bos indicus разного направления продуктивности. Российская сельскохозяйственная наука, 2019, 3: 64–67 (doi:10.31857/s2500-26272019364-67).
31. Denisenko V.Y., Kuzmina T.I. Mobilization of Ca2+ from intracellular stores in Sus scrofa domesticus oocytes after vitrification and thawing, Problems of Cryobiology and Cryomedicine, Academy of Sciences of Ukraine, 2018, 28(2): 120–130 (doi:10.15407/cryo28.02.120).
32. Lojkic M., Getz I., Samardzija M., Matkovic M., Bacic G., Karadjole T., Macesic N., Folnozic I., Spoljaric B. Effect of cysteamine supplementation during in vitro culture of early stage bovine embryos on blastocyst rate and quality. Acta Veterinaria Brno, 2012, 81(3): 229–234 (doi:10.2754/avb201281030229).
33. De Ávila A.C.F.C.M., Da Silveira J.C. Role of extracellular vesicles during oocyte maturation and early embryo development. Reproduction, Fertility and Development, 2019, 32(2): 56–64 (doi:10.1071/RD19389).
34. Azam A., Shahzad Q., Asma-Ul-Husna Q., Ejaz R., Fouladi-Nashta, Ali A., Khalid M., Ullah N., Akhtar T., Akhter S. Supplementing α-Linolenic acid in the in vitro maturation media improves nuclear maturation rate of oocytes and early embryonic development in the Nili Ravi buffalo. Animal Reproduction, Colegio Brasileiro de Reproducao Animal, 2017, 14(4): 1161-1169 (10.21451/1984-3143-AR859).
35. Coleman N.V., Shagiakhmetova G.A., Lebedeva I.Y., Kuzmina T.I., Golubev A.K. In vitro maturation and early developmental capacity of bovine oocytes cultured in pure follicular fluid and supplementation with follicular wall. Theriogenology, 2007, 67 (5): 1053–1059 (doi:10.1016/j.theriogenology.2006.10.019).
36. Xia P., Rutledge J., Armstrong D.T. Expression of glycine cleavage system and effect of glycine on in vitro maturation, fertilization and early embryonic development in pigs. Animal Reproduction Science, 1995, 38(1–2): 155–165 (doi:10.1016/0378-4320(94)01345-M).
37. Accogli G., Douet C., Ambruosi B., Martino N.A., Uranio M.F., Deleuze S., Dell'Aquila M.E., Desantis S., Goudet G. Differential expression and localization of glycosidic residues in in vitro- and in vivomatured cumulus-oocyte complexes in equine and porcine species. Molecular Reproduction and Development, 2014, 81(12): 1115–1135 (doi:10.1002/mrd.22432).
38. El-Shalofy A.S., Moawad A.R., Darwish G.M., Ismail S.T., Badawy A.B.A., Badr M.R. Effect of different vitrification solutions and cryodevices on viability and subsequent development of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cryobiology, 2017, 74: 86–92 (doi:10.1016/j.cryobiol.2016.11.010).
39. El-Shalofy A.S., Moawad A.R., Darwish G.M., Ismail S.T., Badawy A.B.A., Badr M.R. Effects of highly dispersed silica nanoparticleson the cryoresistance of the bovine cumulus-oocyte complexes. Cryobiology, 2018, 85: 176 (doi:10.1016/j.cryobiol.2018.10.215).
40. Fernández A., Díaz T., Muñoz G. Producción in vitro de embriones bovinos. Revista de la Facultad de Ciencias Veterinarias, 2007, 48(1): 51–60.
41. González R., Sjunnesson Y.C.B. Effect of blood plasma collected after adrenocorticotropic hormone administration during the preovulatory period in the sow on oocyte invitro maturation. Theriogenology, 2013, 80(6): 673–683 (doi:10.1016/j.theriogenology.2013.06.017).
42. Do V., Catt S., Amaya G., Batsiokis M., Walton S., Taylor-Robinson A.W. Comparison of pregnancy in cattle when nonvitrified and vitrified in vitro-derived embryos are transferred into recipients. Theriogenology, 2018, 120: 105–110 (doi:10.1016/j.theriogenology.2018.07.027).
43. Goto K., Kajihara Y., Kosaka S., Koba M., Nakanishi Y., Ogawa K. Pregnancies after co-culture of cumulus cells with bovine embryos derived from in-vitro fertilization of in-vitro matured follicular oocytes. Journal of Reproduction and Fertility, 1988, 83(2): 753–758 (doi:10.1530/jrf.0.0830753).
44. Xiao X., Zi X.D., Niu H.R., Xiong X.R., Zhong J.C., Li J.,Wang L., Wang Y. Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes. Reproductive Biology and Endocrinology, 2014, 12(1): 1-7 (doi:10.1186/1477-7827-12-30).
45. Avery B., Strøbech L., Jacobsen T., Bøgh I.B., Greve T. In vitro maturation of bovine cumulus-oocyte complexes in undiluted follicular fluid: Effect on nuclear maturation, pronucleus formation and embryo development. Theriogenology, 2003, 59(3–4): 987–999 (doi:10.1016/S0093-691X(02)01139-1).
46. Chauhan M.S., Palta P., Das S.K., Katiyar P.K., Madan M.L. Replacement of serum and hormone additives with follicular fluid in the IVM medium: Effects on maturation, fertilization and subsequent development of buffalo oocytes in vitro. Theriogenology, 1997, 48(3): 461–469 (doi:10.1016/S0093-691X(97)00255-0).
47. Nedambale T.L., Dinnyés A., Groen W., Dobrinsky J.R., Tian X.C., Yang X. Comparison on in vitro fertilized bovine embryos cultured in KSOM or SOF and cryopreserved by slow freezing or vitrification. Theriogenology, 2004, 62(3–4): 437–449 (doi:10.1016/j.theriogenology.2003.10.020).
48. Yang Y., Kanno C., Sakaguchi K., Katagiri S., Yanagawa Y., Nagano M. Theca cells can support bovine oocyte growth in vitro without the addition of steroid hormones. Theriogenology, 2020, 142: 41–47 (doi:10.1016/j.theriogenology.2019.09.037).
49. Яремчук И.М., Шаловило С.Г., Шаран Н.М. Усовершенствование среды для размораживания эмбрионов крупного рогатого скота. Институт биологии животных УААН, г. Львов, Украина, 2003, 1 (2): 170–173.
50. Suocheng W., Zhuandi G., Li S., Haoqin L., Luju L., Yingying D. Maturation rates of oocytes and levels of FSHR, LHR and GnRHR of COCs response to FSH concentrations in IVM media for sheep. Journal of Applied Biomedicine, 2017, 15(3): 180–186 (doi:10.1016/j.jab.2017.01.001).
51. Nedambale T. L., Dinnyés A., Groen W., Dobrinsky J. R., Tian X. C., Yang, X. Comparison on in vitro fertilized bovine embryos cultured in KSOM or SOF and cryopreserved by slow freezing or vitrification. Theriogenology, 2003, 62: 437–449 (doi:10.1016/j.theriogenology.2003.10.020).
52. Otoi T., Yamamoto K., Koyama N., Tachikawa S., Suzuki T. Cryopreservation of Mature Bovine Oocytes by Vitrification in Straws. Cryobiology, 1998, 37(1): 77–85 (doi:10.1006/cryo.1998.2103).
53. Enright B.P., Lonergan P., Dinnyes A., Fair T., Ward F.A., Yang X., Boland M.P. Culture of in vitro produced bovine zygotes in vitro vs in vivo: Implications for early embryo development and quality. Theriogenology, 2000, 54(5): 659–673 (doi:10.1016/S0093-691X(00)00381-2).
54. Abdalla H., Shimoda M., Hara H., Morita H., Kuwayama M., Hirabayashi M., Hochi S. Vitrification of ICSI- and IVF-derived bovine blastocysts by minimum volume cooling procedure: Effect of developmental stage and age. Theriogenology, 2010, 74(6): 1028–1035 (doi:10.1016/j.theriogenology.2010.04.033).
55. Bruinjé T.C., Gobikrushanth M., Colazo M.G., Ambrose D.J. Dynamics of pre- and post-insemination progesterone profiles and insemination outcomes determined by an inline milk analysis system in primiparous and multiparous Canadian Holstein cows. Theriogenology, 2017, 102: 147–153 (doi:10.1016/j.theriogenology.2017.05.024).
56. Bruinjé T.C., Ambrose D.J. Technical note: Validation of an automated in-line milk progesterone analysis system to diagnose pregnancy in dairy cattle. Journal of dairy science, 2019, 102(4): 3615–3621 (doi:10.3168/jds.2018-15692).
57. Martins J.P.N., Wang D., M N., Rossi G.F., Martini A.P., Martins V.R., Pursley J.R. Level of circulating concentrations of progesterone during ovulatory follicle development affects timing of pregnancy loss in lactating dairy cows. Journal of Dairy Science, 2018, 101(11): 10505–10525 (doi:10.3168/jds.2018-14410).
58. Nyman S., Gustafsson H., Berglund B. Extent and pattern of pregnancy losses and progesterone levels during gestation in Swedish Red and Swedish Holstein dairy cows. Acta veterinaria Scandinavica, 2018, 60(1): 68 (doi:10.1186/s13028-018-0420-6).
59. Bruinjé T.C., Colazo M.G., Ribeiro E.S., Gobikrushanth M., Ambrose D.J. Using in-line milk progesterone data to characterize parameters of luteal activity and their association with fertility in Holstein cows. Journal of Dairy Science, 2019, 102(1): 780–798 (doi:10.3168/jds.2018-14654).
60. Stringfellow D.A., Seidel S.M., Society I. embryo transfer. Manual of the International Embryo Transfer Society, 3rd rev, ed. 1998.
61. Parrish J.J., Susko-Parrish J.L., LeibfriedRutledge M.L., Critser E.S., Eyestone W.H., First N.L. Bovine in vitro fertilization with frozen-thawed semen. Theriogenology, 1986, 25(4): 591–600 (doi:10.1016/0093-691X(86)90143-3).
62. Beydola T., Sharma R., Lee W, Agarwal A. Sperm preparation and selection techniques. In Male Infertility Practice, 2013: 244–251.
63. Henkel R.R., Schill W.B. Sperm preparation for ART. Reproductive Biology and Endocrinology, 2003, 1: 1 - 22 (doi:10.1186/1477-7827-1-108).
64. WHO laboratory manual for the examination and processing of human semen – 5th ed. Moscov: CJSC “Publishing house”, 2010.
65. Вспомагательные репродуктивные технологии и искусственная инсеминация. Москва, 2019.
66. (PDF) USING PERCOLL AND SWIMUP METHODS FOR BOVINE IN VITRO FERTILIZATION [Electronic resource]. URL: https://www.researchgate.net/publication/338221625_USING_PERCOLL_AND_SWIMUP_METHODS_FOR_BOVINE_IN_VITRO_FERTILIZATION (accessed: 25.03.2021).
67. Ribrio I.T.P.B., Lucia N.M., Emilie C., Carmen A., Joanna M.G.S.F., Vicente J.F.F., Pascal M. Combination of oviduct fluid and heparin to improve monospermic zygotes production during porcine in vitro fertilization. Theriogenology, 2015, 86(2): 495–502.
68. Guerreiro B.M., Batista E.O.S., Vieira L.M., Sá Filho M.F., Rodrigues C.A., Castro Netto A., Silveira C.R.A., Bayeux B.M., Dias E.A.R., Monteiro F.M., Accorsi M., Lopes R.N.V.R., Baruselli P. S. Plasma antimullerian hormone: An endocrine marker for invitro embryo production from Bos taurus and Bos indicus donors. Domestic Animal Endocrinology, 2014, 49(1): 96–104 (doi:10.1016/j.domaniend.2014.07.002).
69. Storage and Stability [Electronic resource]. URL: www.nidacon.com (accessed: 02.06.2021).
70. How to make and use gradients of Percoll | Sigma-Aldrich [Electronic resource]. URL: https://www.sigmaaldrich.com/technicaldocuments/protocols/biology/cell-separation-media/gradients-of-percoll.html (accessed: 02.06.2021).
71. Seljelid R., Pertoft H. Separation of monocytes by density gradients of Percoll. Methods for Studying Mononuclear Phagocytes, 1981: 201–205.
72. Hester R.B., Walker W.S. Separation of murine mononuclear phagocytes by density gradients of Percoll // Methods for Studying Mononuclear Phagocytes. Elsevier, 1981. P. 195–200 (doi:10.1016/b978-0-12-044220-1.50028-3).
73. Rocha-Frigoni N., Leao B., Feliciano M., Vicente W., Oliveira M. In vitro production of sheep embryos: advances and challenges. Revista Brasileira de Reprodução Animal, 2014, 38: 103–109.
74. Корниенко Е.В., Романова А.Б., Попов Д.В., Маленко Г.П. Витрификация эмбрионов крупного рогатого скота без блестящей оболочки в триацетат целлюлозном полом волокне. Ветеринария, зоотехния и биология, 2017, 12: 35–44.
75. Машталер Д., Хромов Н. Сравнительная эффективность криоконсервации эмбрионов КРС витрификации и программной полученных методом in vitro. Генетика и селекция, 2013, 1: 51–58.
Рецензия
Для цитирования:
Никитин Г.С. Современные подходы при получении и криоконсервации эмбрионов крупного рогатого скота in vitro. Международный вестник ветеринарии. 2021;(3):192-205. https://doi.org/10.17238/issn2072-2419.2021.3.192
For citation:
Nikitin G.S. Modern approaches for obtaining and cryoconservation of cattle embryos in vitro. International Journal of Veterinary Medicine. 2021;(3):192-205. (In Russ.) https://doi.org/10.17238/issn2072-2419.2021.3.192