Assessment of the significance of new phenotype parameters of Russian meat merino sheep by principal component analysis
https://doi.org/10.52419/issn2072-2419.2021.4.109
Abstract
Phenotype assessment is an important process in breeding practice and for studying the influence of genes that shape the productive qualities of sheep. As a result of many years of selection and breeding work, the existing indicators fixed in the breed have lost their supposed potential, which dictates the need to search for new indicators that more accurately characterize the meat productivity of sheep. The aim of the work is to assess the informativeness of phenotype parameters in Russian meat merino sheep by the method of principal component analysis, for further use in genomic selection programs, as well as applicable for in vivo assessment of meat productivity. For the first time, new methods of assessing the exterior and interior for the study of meat productivity have been proposed and their efficiency has been determined for russian meat merino (RMM) sheep. The possibility of determining the size of individual muscle groups using such parameters as the girth of the shoulder, forearm and thigh by instrumental methods, as well as measuring the thigh muscle thickness and fat thickness (TMT and FT) in the lumbar region using ultrasound was studied. The object of the study was the one-year -old rams (n = 50) of the Russian Meat Merino (RMM) breed. To assess the significance of the proposed measurements, in comparison with those used in existing practice, the principal component method and correlation analysis were used. In the course of the work carried out, it was found that measurements: thigh volume, forearm girth had the most significant correlations with all parameters describing the exterior of the PMM breed. Based on the analysis of the main components, it was determined that the first six components in our study explained more than 80% of phenotypic variability. Thus, the proposed parameters determined by ultrasound: TMT and FT are advisable to use for the phenotypic assessment of the conformation of sheep of the RMM breed, especially when searching for genomic associations with productive qualities.
About the Authors
A. Yu. KrivoruchkoRussian Federation
O. A. Yatsyk
Russian Federation
A. V. Skokova
Russian Federation
K. A. Katkov
Russian Federation
A. A. Kanibolotskaya
Russian Federation
References
1. Агаркова Н .А. Продуктивность и биологические особенности овец породы джалгинский меринос при внутри- и межлинейном подборе : дис. на соиск. учен. степ. канд. с.-х. наук. Ставрополь, 2020. 136 с.
2. Буйлов С. В., Винников Н. И., Хамицаев В. С. Методика оценки мясной продуктивности овец. Дубровицы, Московская область: ВИЖ, 1978. 49 С.
3. Временный порядок и условия проведения бонитировки племенных овец породы российский мясной меринос / М. И. Селионова [и др.] //Сельскохозяйственный журнал. 2017. Т. 2. №. 10. C. 10-16 (a)
4. Методические рекомендации по раннему прогнозированию, отбору и выращиванию высокопродуктивных баранов-производителей тонкорунных и полутонкорунных пород [Электронный ресурс] / Рос. акад. с.-х. наук. Всерос. науч.- исслед. ин-т овцеводства и козоводства ; Сост.: В. А. Мороз и др. Ставрополь : [б. и.], 2001. 29 с.
5. Нормы и рационы кормления сельскохозяйственных животных / Под ред. А. П. Калашникова, В. И. Фисинина, В. В. Щеглова, Н. И. Клейменова. Справочное пособие. 3-е издание перераб. и доп. Москва: 2003. 456 с.
6. Павлова Е. А. Потребительские свойства баранины и мясная продуктивность молодняка овец ставропольской породы в зависимости от живой массы при убое : дис. ... канд. техн. наук : Москва, 2004 166 c.
7. Фенотипические корреляции и наследуемость признаков чистопородным и помесным молодняком с разной кровностью по австралийскому мясному мериносу / Е. Н. Чернобай [и др.] // Вестник Курской государственной сельскохозяйственной академии. 2018. № 6. С. 121-126.
8. Целевые индикаторы и признаки породы российский мясной меринос / М. И. Селионова [и др.] // Сельскохозяйственный журнал. 2017. Т. 2. №. 10. C/ 16-23. (b)
9. Шипунов А. Б., Балдин Е. М., Волкова П. А. и др. Наглядная статистика. Используем R [Электронный ресурс]. URL: https://cran.r-project.org/doc/contrib/Shipunov-rbook.pdf. (Дата обращения: 10.07.2021).
10. Шумаенко С. Н. Эффективность линейного разведения в хозяйствахоригинаторах породы российский мясной меринос //Сельскохозяйственный журнал. 2020. №. 2. С. 59-65.
11. Abbasi M. A., Ghafouri-Kesbi F. Genetic (co) variance components for body weight and body measurements in Makooei sheep // Asian-Australasian journal of animal sciences. 2011. Т. 24. №. 6. С. 739-743.
12. Accuracy of in vivo muscularity indices measured by computed tomography and their association with carcass quality in lambs / E. A. Navajas [et al.] //Meat Science. 2007. Т. 75. №. 3. С. 533-542.
13. Akbar M. A. et al. Principal Component Analysis of Morphometric Traits Explain the Morphological Structure of Thalli Sheep. – 2021. Pakistan J. Zool., pp 1-6, 2021. DOI: https://dx.doi.org/10.17582/journal.pjz/20200220060257
14. Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep /A. Kominakis [et al.] //Genetics Selection Evolution. 2017. Т. 49. №. 1. С. 1- 16.DOI 10.1186/s12711-017-0316-3
15. Detailed phenotyping identifies genes with pleiotropic effects on body composition / S. Bolormaa [et al.] //BMC genomics. 2016. Т. 17. №. 1. С. 1-21.
16. Evaluating the effects of the c.* 1232G> A mutation and TM-QTL in Texel× Welsh Mountain lambs using ultrasound and video image analyses / A. Y. Masri [et al.] //Small Ruminant Research. 2011. Т. 99. №. 2-3. С. 99-109.
17. Evaluation of ultrasound scanning to predict carcass composition of Austrian meat sheep / L. Grill [et al.] //Small Ruminant Research. 2015. Т. 123. №. 2-3. С. 260-268.
18. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight / H. A. Al-Mamun [et al.] // Genetics Selection Evolution. 2015. Т. 47. №. 1. С. 1-11.
19. Greenwood P. L. Prediction of dressing percentage, carcass characteristics and meat yield of goats, and implications for live assessment and carcass-grading systems // Animal Production Science. 2020. Т. 61. №. 3. С. 313-325.
20. MathWorks – Центр компетенций [Электронный ресурс]. URL: http:// matlab.exponenta.ru/ Режим доступа: свободный (дата обращения: 07.08.2020).
21. Morphological structure of Zulu sheep based on principal component analysis of body measurements / B. S. Mavule [et al.] //Small Ruminant Research. 2013. Т. 111. №. 1-3. С. 23-30.
22. Morphological variation in the horse: defining complex traits of body size and shape/ S. A. Brooks [et al.] //Animal Genetics. 2010. Т. 41. С. 159-165.
23. Osaiyuwu O. H., Akinyemi M. O., Salako A. E. Factor analysis of the morphostructure of mature Balami sheep //Res. J. Anim. Sci. 2010. Т. 4. №. 2. – С. 63-65.
24. Posbergh C. J., Huson H. J. All sheeps and sizes: a genetic investigation of mature body size across sheep breeds reveals a polygenic nature //Animal Genetics. 2021. Т. 52. №. 1. С. 99-107.
25. Prediction of carcass composition through measurements in vivo and measurements of the carcass of growing Santa Inês sheep / M. B. Gomes [et al.] //PloS one. 2021. Т. 16. №. 3. С.
26. Principal component analysis for evaluating a ranking method used in the performance testing in sheep of Morada Nova breed / M. S. da Silva [et al.] //Semina: Ciências Agrárias. 2015. Т. 36. №. 6. С. 3909- 3921
27. Principal component analysis of morphological traits of Assam hill goat in eastern Himalayan India / G. Khargharia [et al.] //J. Anim. Plant Sci. 2015. Т. 25. №. 5. С. 1251- 1258.).
28. Salako A. E. Principal component factor analysis of the morph structure of immature Uda sheep // Int. J. Morph. 2006. № 24, (4). pp. 571-574
29. Shirzeyli F. H., Lavvaf A., Asadi A. Estimation of body weight from body measurements in four breeds of Iranian sheep //Songklanakarin Journal of Science & Technology. 2013. Т. 35. №. 5.
30. Sigar J. Visible hyperspectral imaging for predicting Intra-muscular fat content from sheep carcasses : дис. – Murdoch University, 2020.
31. Single loci and haplotypes in CAPN1 and CAST genes are associated with growth, biometrics, and in vivo carcass traits in Santa Inês sheep / A. L. Machado [et al.] // Embrapa Tabuleiros Costeiros-Artigo em periódico indexado (ALICE). 2020
32. Silva S. R. et al. In vivo estimation of sheep carcass composition using real-time ultrasound with two probes of 5 and 7.5 MHz and image analysis //Journal of animal science. 2006. Т. 84. №. 12. С. 3433-3439.doi:10.2527/jas.2006-154
33. Silva, S. R., Guedes, C. M., Santos, V. A., Lourenço, A. L., Azevedo, J. M. T., & Dias-da-Silva, A. (2007). Sheep carcass composition estimated from Longissimus thoracis et lumborum muscle volume measured by in vivo real-time ultrasonography. Meat Science, 76(4), 708–714. doi:10.1016/j.meatsci.2007.02.009
34. The effects of selection indices for sustainable hill sheep production on carcass composition and muscularity of lambs, measured using X-ray computed tomography / N. R. Lambe [et al.] //Animal. 2008. Т. 2. №. 1. С. 27-35.
35. Yakubu A. Principal component analysis of the conformation traits of Yankasa sheep //Biotechnology in Animal Husbandry. 2013. Т. 29. №. 1. С. 65-74.
Review
For citations:
Krivoruchko A.Yu., Yatsyk O.A., Skokova A.V., Katkov K.A., Kanibolotskaya A.A. Assessment of the significance of new phenotype parameters of Russian meat merino sheep by principal component analysis. International Journal of Veterinary Medicine. 2021;(4):109-120. (In Russ.) https://doi.org/10.52419/issn2072-2419.2021.4.109