Preview

International Journal of Veterinary Medicine

Advanced search

Experimental study of the biocompatibility of the implant based on bacterial cellulose

https://doi.org/10.52419/issn2072-2419.2022.1.27

Abstract

This work is devoted to an experimental study of the reaction of body tissues to an implant based on bacterial cellulose synthesized by the bacterial strain Gluconacetobacter xylinus. The influence of the internal environment of the body on the characteristics of the implanted material was also studied to determine the prospects for its use in veterinary medicine.
Currently, the issue of creating new implantable materials for a long time, or improving existing ones, does not lose its relevance. Based on this, it can be concluded that there are shortcomings in the previously developed materials. Certain requirements are imposed on implantable materials, such as elasticity, strength, porosity, non-toxicity, and others. The most important property of such materials can be called biocompatibility, as well as resistance to the effects of the biological environment.
This study is aimed at establishing the possibility of using bacterial cellulose (BC) as an implantable material, which combines all the necessary properties for implants. The study of the reaction of body tissues to the implant was carried out on laboratory rats of the Wistar line. The implanted material was placed on the outer layer of the muscles of the abdominal wall of laboratory animals, after which, on the 14th, 30th and 90th days, a visual examination of the state of cellulose and nearby tissues was carried out, and tissues were selected for histological examination.
The experimental results indicate that the implant based on bacterial cellulose does not cause negative reactions from nearby tissues, does not collapse during the observation period, and is reliably fixed on the muscle layer by a capsule of collagen fibers.

About the Authors

T. E. Mironova
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences; Federal State Educational Institution of Higher Education «Novosibirsk State Agrarian University»
Russian Federation

 junior scientist, postgraduate 



V. Yu. Koptev
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences
Russian Federation

 senior scientist 



V. N. Afonyushkin
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences; Federal State Educational Institution of Higher Education «Novosibirsk State Agrarian University»; Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences
Russian Federation

 Ph.D. of vet. sciences Ph.D. of biol. sciences 



A. A. Beghtold
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences
Russian Federation


References

1. Гладышева Е. К. Биосинтез бактериальной целлюлозы на ферментативном гидролизе технической целлюлозы из плодовых оболочек овса/ Е. К. Гладышева, Е. А. Скиба // Известия вузов. Прикладная химия и биотехнология том. – 2017. Т.-7, №8. С. 140-146.

2. Громовых Т. И., Садыкова В.С., Луценко С.В., Дмитренок А.С., Фельдман Н.Б., Данильчук Т.Н., Каширин В.В. // Прикладная биохимия и микробиология. 2017. Т. 53. № 1. С. 69–75.

3. Коверзанова Е. В. Оценка биосовместимости полимерных материалов для создания новых эмболизирующих носителей/Е.В. Коверзанова, С.В. Усачев, К.З. Гумаргалиева и др. // Диагностическая и интервенционная радиология. – 2012. – №1. С 97-102.

4. Фетисов Г.П. Комплексное обеспечение биосовместимости материалов/ Г.П. Фетисов, Ю.П.Гончарова, М.И. Монахова//Вестник Волгоградского государственного университета. Серия 10: Инновационная деятельность. – 2011. – №5. С 125-133.

5. Azuma, C.; Yasuda, K.; Tanabe, Y.; Taniguro, H.; Kanaya, F.; Nakayama, A.; Chen, Y.M.; Gong, J.P.; Osada, Y. Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J. Biomed. Mater. Res. Part A 2007, 81, 373–380.

6. Czaja, W., Krystynowicz, A., Bielecki, S., & Brownjr, R. (2006). Microbial cellulose—the natural power to heal wounds. Biomaterials, 27(2), 145–151. doi:10.1016/j.biomaterials.2005.07.035.

7. Gorgieva, S.; Hribernik, S. Microstructured and Degradable Bacterial Cellulose–Gelatin Composite Membranes: Mineralization Aspects and Biomedical Relevance. Nanomaterials 2019, 9, 303.

8. Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. /Bacterial synthesized cellulose — artificial blood vessels for microsurgery // Progress in Polymer Science. – 2001. P. 1561–1603. doi:10.1016/S0079-6700(01)00021-1.

9. Petersen, N.; Gatenholm, P. Bacterial cellulose-based materials and medical devices: Current state and perspectives. Appl. Microbiol. Biotechnol.2011, 91, 1277–1286.

10. Pigaleva M.A., Bulat M. V., Gromovykh T.I., Gavryushina I.A., Lutsenko S. V., Gallyamov M.O., Novikov I.V., Buyanovskaya A.G., Kiselyova O.I. // J. Supercrit. Fluids. 2019. V. 147. P. 59–69.

11. Torres, F., Commeaux, S., & Troncoso, O. (2012). Biocompatibility of Bacterial Cellulose Based Biomaterials. Journal of Functional Biomaterials, 3 (4), 864–878. doi:10.3390/jfb3040864.


Review

For citations:


Mironova T.E., Koptev V.Yu., Afonyushkin V.N., Beghtold A.A. Experimental study of the biocompatibility of the implant based on bacterial cellulose. International Journal of Veterinary Medicine. 2022;(1):27-31. (In Russ.) https://doi.org/10.52419/issn2072-2419.2022.1.27

Views: 357


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)