Monkeys as a model object for studying degenerativedystrophic alteration in the human spine
https://doi.org/10.52419/issn2072-2419.2024.3.287
Abstract
Degenerative-dystrophic alteration in the spine (DDAS) is a chronic progressive pathology characterized by changes in the intervertebral discs, joints, ligaments, and bone tissue of the vertebrae; manifested by severe orthopedic, neurological and visceral disorders. Obtaining and comprehensively studying animal models of DDAS is important for the development of methods for the prevention and treatment of this pathology in humans. An ideal animal model of DDAS should have morphological manifestations and biomechanical characteristics similar to humans. Monkeys are the only species of experimental animals that are closest to humans in their anatomical, physiological and genetic characteristics; they are considered «laboratory doubles» of humans and are of particular interest to researchers. The monkeys are very similar to humans in the structure of the spine and motor behavior. Our results indicate a great similarity of degenerative-dystrophic processes in the spine in monkeys and in humans. Monkeys are susceptible to degenerative-dystrophic processes in all parts of the spine (even in the caudal region), despite pronograde statics and the absence of vertical loads. The development of DDAS in monkeys is age dependent, as is the case in humans: most monkeys with such lesions are adults or geriatric animals. The frequency of detection of DDAS based on autopsy results (our own data) and similar pathological changes in the spine at macroand microscopic levels indicate the possibility of using the monkey species we studied as a natural model for studying similar pathology in humans.
About the Authors
A. O. OganesyanRussian Federation
Oganesyan A.O. – ml. scientific. sotr. Laboratory of Pathological Anatomy of the Kurchatov Complex of Medical Primatology
A. V. Panchenko
Russian Federation
Panchenko A.V. – Doctor of Medical Sciences, Chief Researcher of the Laboratory of Molecular Biology of the Kurchatov Complex of Medical Primatology
Yu. A. Kolesnik
Russian Federation
Kolesnik Yu.A. - Laboratory assistant researcher of the Laboratory of Pathological Anatomy of the Kurchatov Complex of Medical Primatology
I. L. Gubsky
Russian Federation
Gubsky I.L. – Candidate of Medical Sciences, art. scientific. sotr. Neuroregeneration Laboratories
V. P. Baklaushev
Russian Federation
Baklaushev V.P. – Doctor of Medical Sciences, Deputy Director General for Scientific Work and Medical Technologies
D. A. Ilyazyants
Russian Federation
Ilyazyants D.A. – Jr. scientific. sotr. laboratories of pathological Anatomy of the Kurchatov Complex of Medical Primatology
V. A. Shestakov
Russian Federation
Shestakov V.A. – st cand. Veterinarian of Sciences, art. scientific. sotr. laboratories of pathological anatomy of the Kurchatov Complex of Medical Primatology
E. Yu. Radomskaya
Russian Federation
Radomskaya E. Yu. – pathologist of the Laboratory of Pathological Anatomy of the Laboratory of Pathological Anatomy of the Kurchatov Complex of Medical Primatology
D. V. Bulgin
Russian Federation
Bulgin D.V. – Candidate of Medical Sciences, Ved. sci. sotr. Laboratory of Pathological Anatomy
References
1. Shpagin M.V., Yarikov A.V., Nazmeev I.A., Gorelov S.A., Fraerman A.P. The experience of denervation of facet joints in the lumbar spine. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2019; 16 (1):57-62. https://doi.org/10.14531/ss2019.1.57-62
2. Gamanovich A.I., Kulesh S.D. Nevrologicheskie proyavleniya degenerativno - distroficheskih porazhenij poyasnichno - krestcovogo otdela pozvonochnika. Medicinskie novosti. 2023;340(1):10-14.
3. Podymova I.G., Danilov A.B. Fasetsindrom. Russkij medicinskij zhurnal.2014; 22(32):47–50.
4. Ramih E. A. Kratkij ocherk anatomofunkcional'nyh osobennostej pozvonochnika. Hirurgiya pozvonochnika. 2007;2:77-95.
5. Nachemson AL. Newest knowledge of low back pain. A critical look. Clin Orthop Relat Res. 1992 Jun;(279):8-20.
6. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976). 2002 Dec 1;27(23):2631-44. doi: 10.1097/00007632-200212010-00002.
7. Raj PP. Intervertebral disc: anatomyphysiology-pathophysiology-treatment. Pain Pract. 2008 Jan-Feb;8(1):18-44. doi: 10.1111/j.1533-2500.2007.00171.x.
8. Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol. 2023 Mar;19(3):136-152. doi: 10.1038/s41584-022-00888-z.
9. Urban JP, Roberts S. Development and degeneration of the intervertebral discs. Mol Med Today. 1995 Oct;1(7):329-35. doi: 10.1016/s1357-4310(95)80032-8.
10. Choi YS. Pathophysiology of degenerative disc disease. Asian Spine J. 2009 Jun;3 (1):39-44. doi: 10.4184/asj.2009.3.1.39.
11. Palepu V, Kodigudla M, Goel VK. Biomechanics of disc degeneration. Adv Orthop. 2012;2012:726210. doi: 10.1155/2012/726210.
12. Garfin Sr, Herkowitz H. Lumbar disc degeneration: normal aging or a disease process? In: Wiesel SW, Weinstein JN, Herkowitz H, Dvorak J, Bell G., editors. The lumbar spine. Philadelphia: WB Saunders;1996. p 458–473.
13. Benoist M. Natural history of the aging spine. Eur Spine J. 2003 Oct;12 Suppl 2 (Suppl 2):S86-9. doi: 10.1007/s00586-003-0593-0.
14. Lyu FJ, Cui H, Pan H, Mc Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res. 2021 Jan 29;9(1):7. doi: 10.1038/s41413-020-00125-x.
15. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N. 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J. 2002 Aug;11(4):308-20. doi: 10.1007/s00586-002-0472-0.
16. Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 2006 Apr;88 Suppl 2:10-4. doi: 10.2106/JBJS.F.00019.
17. Singh K, Masuda K, An HS. Animal models for human disc degeneration. Spine J. 2005;5:S267‐S279. doi: 10.1016/j.spinee.2005.02.016.
18. Vincent K, Mohanty S, Pinelli R, Bonavita R, Pricop P, Albert TJ, et al. Aging of mouse intervertebral disc and association with back pain. Bone. 2019 Jun;123:246-259. doi: 10.1016/j.bone.2019.03.037.
19. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, et al. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 2008 Jan;17 (1):2-19. doi: 10.1007/s00586-007-0414-y.
20. Goel SA, Varghese V, Demir T. Animal models of spinal injury for studying back pain and SCI. J Clin Orthop Trauma. 2020 Sep-Oct;11(5):816-821. doi: 10.1016/j.jcot.2020.07.004.
21. Lee NN, Salzer E, Bach FC, Bonilla AF, Cook JL, Gazit Z, et al. A comprehensive tool box for large animal studies of intervertebral disc degeneration. JOR Spine. 2021 Jun 14;4(2):e1162. doi: 10.1002/jsp2.1162.
22. Poletto DL, Crowley JD, Tanglay O, Walsh WR, Pelletier MH. Preclinical in vivo animal models of intervertebral disc degeneration. Part 1: A systematic review. JOR Spine. 2022 Dec 20;6(1):e1234. doi: 10.1002/jsp2.1234.
23. Hickman TT, Rathan-Kumar S, Peck SH. Development, Pathogenesis, and Regeneration of the Intervertebral Disc: Current and Future Insights Spanning Traditional to Omics Methods. Front Cell Dev Biol. 2022 Mar 11;10:841831. doi: 10.3389/fcell.2022.841831.
24. Lim KZ, Daly CD, Ghosh P, Jenkin G, Oehme D, Cooper-White J, Naidoo T, Goldschlager T. Ovine Lumbar Intervertebral Disc Degeneration Model Utilizing a Lateral Retroperitoneal Drill Bit Injury. J Vis Exp. 2017 May 25;(123):55753. doi: 10.3791/55753.
25. Lapin B.A., Dzhikidze E.K., Fridman E.P. Rukovodstvo po medicinskoj primatologii. M.; Medicina, 1987: 192 s.
26. Oichi T, Taniguchi Y, Oshima Y, Tanaka S, Saito T. Pathomechanism of intervertebral disc degeneration. JOR Spine. 2020 Feb 13;3(1):e1076. doi: 10.1002/jsp2.1076.
27. Wang J, Zhu P, Pan X, Yang J, Wang S, Wang W, et al. Correlation between motor behavior and age-related intervertebral disc degeneration in cynomolgus monkeys. JOR Spine. 2022 Jan 1;5(1):e1183. doi: 10.1002/jsp2.1183.
28. Lauerman WC, Platenberg RC, Cain JE, Deeney VF. Age-related disk degeneration: preliminary report of a naturally occurring baboon model. J Spinal Disord. 1992 Jun;5 (2):170-4.
29. Bailey JF, Fields AJ, Liebenberg E, Mattison JA, Lotz JC, Kramer PA. Comparison of vertebral and intervertebral disc lesions in aging humans and rhesus monkeys. Osteoarthritis Cartilage. 2014 Jul;22(7):980-5. doi: 10.1016/j.joca.2014.04.027.
30. Simmons HA. Age-Associated Pathology in Rhesus Macaques (Macaca mulatta). Vet Pathol. 2016 Mar;53(2):399-416. doi: 10.1177/0300985815620628.
Review
For citations:
Oganesyan A.O., Panchenko A.V., Kolesnik Yu.A., Gubsky I.L., Baklaushev V.P., Ilyazyants D.A., Shestakov V.A., Radomskaya E.Yu., Bulgin D.V. Monkeys as a model object for studying degenerativedystrophic alteration in the human spine. International Journal of Veterinary Medicine. 2024;(3):287-300. (In Russ.) https://doi.org/10.52419/issn2072-2419.2024.3.287



















