Preview

International Journal of Veterinary Medicine

Advanced search

Development of the unified intestinal medium for microbiological research in veterinary medicine

https://doi.org/10.52419/issn2072-2419.2024.4.26

Abstract

Artificial intestinal media are in high demand in microbiological research in the field of veterinary medicine, since they allow obtaining a qualitative and quantitative composition of microbiota corresponding to the natural conditions. The only artificial intestinal medium currently available in domestic microbiological practice has not been validated and its use is limited to the cultivation of lactobacilli. In this regard, the development of a unified artificial intestinal medium (UAIM) that best matches the natural conditions of the intestine, using the example of Brown Nick chickens, is of scientific interest for the effective cultivation of microorganisms during microbiological research in veterinary medicine. In the course of the studies, existing artificial intestinal media were analyzed and key components were selected, including pectin, xylan, arabinogalactan, amylopectin, casein, starch, bactopeptone, salts and vitamins, which ensures the reproduction of natural intestinal conditions. To test the effectiveness of the medium, ten samples of chicken feces were selected, five of which were incubated under UAIM conditions, and the other five were cultured without the use of the medium. The resulting bacterial cultures were identified and quantitatively analyzed using MALDI-TOF mass spectrometry and the method of seeding on selective media. Statistical analysis showed no significant differences in the microbiota composition between the experimental groups (p>0.05), indicating that the intestinal conditions were successfully reproduced using UAIM. This study demonstrates the potential of UAIM for culturing intestinal microbiota and can serve as a basis for further studies aimed at modeling intestinal conditions in the development of veterinary drugs and feeds.

About the Authors

S. K. Shebeko
Don State Technical University
Russian Federation

Shebeko S.K. – Doctor of Pharmacy, Prof., Head of the Department of Bioengineering and Medical Systems and Technologies



Iu. A. Tikhmeneva
Don State Technical University
Russian Federation

Tikhmeneva Iu.A. – postgraduate student 



K. V. Sandulian
Rostov State Medical University
Russian Federation

Sandulian K.V. – student 



A. M. Ermakov
Don State Technical University
Russian Federation

Ermakov A.M. – Doctor of Biology, Prof., Dean of the Faculty of Bioengineering and Veterinary Medicine



References

1. Mazanko, M.S. Antioxidant and antimutagenic properties of probiotic Lactobacilli determined using LUX-biosensors / M.S. Mazanko, E.V. Prazdnova, M.P. Kulikov [et al.] // Enzyme Microb. Technol. 2022:155:109980. – DOI: https://doi.org/10.1016/j.enzmictec.2021.109980.

2. Kaminsky, D.L. Evaluation of nutrient media to grow some infection diseases causative agents / D.L. Kaminsky, V.V. Lobanov, K.K. Rozhkov, A.B. Mazrukho // Zhurnal Mikrobiol. Epidemiol. i Immunobiol. 2017. Vol. 94 (2), P. 104-110.

3. Maas, E. Investigating the survival and activity of a bacteriophage in the complex colon environment with the use of a dynamic model of the colon (TIM-2) / E. Maas, J. Penders, K. Venema // Microbial Pathogenesis. 2023:178(3):106061.

4. Butardo, V.M. Chapter Two - Tailoring Grain Storage Reserves for a Healthier Rice Diet and its Comparative Status with Other Cereals / V.M. Butardo, N. Sreenivasulu // International Review of Cell and Molecular Biology. 2016:323:31-70.

5. Blanco-Pérez, F. The Dietary Fiber Pectin: Health Benefits and Potential for the Treatment of Allergies by Modulation of Gut Microbiota / F. Blanco-Pérez, H. Steigerwald, S. Schülke [et al.] // Curr. Allergy Asthma Rep. 2021:21(10):43. – DOI: 10.1007/s11882-021-01020-z.

6. Kiyoto, S. Distribution of Lignin, Hemicellulose, and Arabinogalactan Protein in Hemp Phloem Fibers / S. Kiyoto, A. Yoshinaga, E. Fernandez-Tendero [et al.] // Microsc. Microanal. 2018:24(4):442-452. – DOI: 10.1017/S1431927618012448.

7. Yang, Z. Dietary amylose and amylopectin ratio changes starch digestion and intestinal microbiota diversity in goslings / Z. Yang, C. Xu, W.Wang [et al.] // Br. Poult. Sci. 2022:63(5):691-700. – DOI: 10.1080/00071668.2022.2079398.

8. Solihin, J. Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01 / J. Solihin, D.E. Waturangi, T. Purwadaria // BMC Microbiol. 2021:21(1):232. – DOI: 10.1186/s12866-021-02294-z.

9. Seung, D. Amylose in starch: towards an understanding of biosynthesis, structure and function / D. Seung // New Phytol. 2020:228(5):1490-1504. – DOI: 10.1111/nph.16858.

10. Favero, M.S. Microbiological sampling of surfaces / M.S. Favero, J.J. McDade, J.A. Robertsen [et al.] // J. Appl. Bacteriol. 1968:31(3):336-343. – DOI: 10.1111/j.1365-2672.1968.tb00375.x.

11. Abou Dobara, M.I. Production and partial characterization of high molecular weight extracellular alpha-amylase from Thermoactinomyces vulgaris isolated from Egyptian soil / M.I. Abou Dobara, A.K. ElSayed, A.A. El-Fallal, N.F. Omar // Polish J. Microbiol. 2011:60(1):65-71.

12. Campbell, C. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells / C. Campbell, P. T. McKenney, D. Konstantinovsky [et al.] // Nature. 2020:581(7809):475-479. – DOI: 10.1038/s41586-020-2193-0.

13. Piwowarski, J.P. Differences in Metabolism of Ellagitannins by Human Gut Microbiota ex Vivo Cultures / J.P. Piwowarski, S. Granica, J. Stefańska, A.K. Kiss // J. Nat. Prod. 2016:79(12):3022-3030. – DOI: 10.1021/acs.jnatprod.6b00602.

14. Dial, C.N. Para-Aminobenzoic Acid, Calcium, and c-di-GMP Induce Formation of Cohesive, Syp-Polysaccharide-Dependent Biofilms in Vibrio fischeri / C.N. Dial, L. Speare, G.C. Sharpe [et al.] // MBio. 2021:12(5): e0203421. – DOI: 10.1128/mBio.02034-21.

15. Nosaka, K. Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae / K. Nosaka // Appl. Microbiol. Biotechnol. 2006:72(1):30-40. – DOI: 10.1007/s00253-006-0464-9.

16. Shats, I. Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway / I. Shats, J. G. Williams, J. Liu [et al.] // Cell Metab. 2020:31(3):564-579.e7. – DOI: 10.1016/j.cmet.2020.02.001.

17. Takagi, H. L-Cysteine Metabolism and Fermentation in Microorganisms / Takagi H., Ohtsu I. // Adv. Biochem. Eng. Biotechnol. 2017:159:129-151. – DOI: 10.1007/10_2016_29.

18. Satiaputra, J. Biotin-mediated growth and gene expression in Staphylococcus aureus is highly responsive to environmental biotin / J. Satiaputra, B.A. Eijkelkamp, C.A. McDevitt [et al.] // Appl. Microbiol. Biotechnol. 2018:102(8):3793-3803. – DOI: 10.1007/s00253-018-8866-z.

19. Hou, H. Epigenetic factors in atherosclerosis: DNA methylation, folic acid metabolism, and intestinal microbiota / Hou H., Zhao H. // Clin. Chim. Acta. 2021:512:7-11. – DOI: https://doi.org/10.1016/j.cca.2020.11.013.

20. Tahiliani, A.G. Pantothenic acid in health and disease / Tahiliani A.G., Beinlich C.J. // Vitam. Horm., 1991:46:165-228. – DOI: 10.1016/s0083-6729(08)60684-6.


Review

For citations:


Shebeko S.K., Tikhmeneva I.A., Sandulian K.V., Ermakov A.M. Development of the unified intestinal medium for microbiological research in veterinary medicine. International Journal of Veterinary Medicine. 2024;(4):26-34. (In Russ.) https://doi.org/10.52419/issn2072-2419.2024.4.26

Views: 137


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-2419 (Print)